Lagrange equations generalization for analysis of mechanical systems with inherited elements modeled by Calvin bodies
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 115 (2007) no. 2, pp. 192-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We suggest a new approach for constructing the mathematical model of Kelvin body in Lagrange coordinates.
@article{VSGTU_2007_115_2_a34,
     author = {G. V. Pavlov and A. V. Alimov},
     title = {Lagrange equations generalization for analysis of mechanical systems with inherited elements modeled by {Calvin} bodies},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {192--194},
     year = {2007},
     volume = {115},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2007_115_2_a34/}
}
TY  - JOUR
AU  - G. V. Pavlov
AU  - A. V. Alimov
TI  - Lagrange equations generalization for analysis of mechanical systems with inherited elements modeled by Calvin bodies
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2007
SP  - 192
EP  - 194
VL  - 115
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2007_115_2_a34/
LA  - ru
ID  - VSGTU_2007_115_2_a34
ER  - 
%0 Journal Article
%A G. V. Pavlov
%A A. V. Alimov
%T Lagrange equations generalization for analysis of mechanical systems with inherited elements modeled by Calvin bodies
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2007
%P 192-194
%V 115
%N 2
%U http://geodesic.mathdoc.fr/item/VSGTU_2007_115_2_a34/
%G ru
%F VSGTU_2007_115_2_a34
G. V. Pavlov; A. V. Alimov. Lagrange equations generalization for analysis of mechanical systems with inherited elements modeled by Calvin bodies. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 115 (2007) no. 2, pp. 192-194. http://geodesic.mathdoc.fr/item/VSGTU_2007_115_2_a34/

[1] O. A. Goroshko, K. Khedrikh, Analitichka dinamika (mekhanika) diskretnikh naslednikh sistema, Izdavachka Univerziteta u Nishu, 2000

[2] Radchenko V. P., Shapievskii D. V., “Analiz nelineinoi obobschennoi modeli Maksvella”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2005, no. 38, 55–64 | DOI

[3] L. L. Makarova, V. V. Kondrashov, Dempfirovanie kolebanii v srede, modeliruemoi posledovatelnym soedineniem elementa Kelvina s parallelno soedinennymi elementami Foikhta i Dzheffrisa, Tul. gosud. un-t, Tula, 2005; Деп. в ВИНИТИ 24.06.2005. No 908-В2005

[4] Vasilenko N. V., Teoriya kolebanii, Vyssh. shk., Kiev, 1992 | Zbl