Lagrange equations generalization for analysis of mechanical systems with inherited elements modeled by Calvin bodies
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 115 (2007) no. 2, pp. 192-194
Cet article a éte moissonné depuis la source Math-Net.Ru
We suggest a new approach for constructing the mathematical model of Kelvin body in Lagrange coordinates.
@article{VSGTU_2007_115_2_a34,
author = {G. V. Pavlov and A. V. Alimov},
title = {Lagrange equations generalization for analysis of mechanical systems with inherited elements modeled by {Calvin} bodies},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {192--194},
year = {2007},
volume = {115},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2007_115_2_a34/}
}
TY - JOUR AU - G. V. Pavlov AU - A. V. Alimov TI - Lagrange equations generalization for analysis of mechanical systems with inherited elements modeled by Calvin bodies JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2007 SP - 192 EP - 194 VL - 115 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGTU_2007_115_2_a34/ LA - ru ID - VSGTU_2007_115_2_a34 ER -
%0 Journal Article %A G. V. Pavlov %A A. V. Alimov %T Lagrange equations generalization for analysis of mechanical systems with inherited elements modeled by Calvin bodies %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2007 %P 192-194 %V 115 %N 2 %U http://geodesic.mathdoc.fr/item/VSGTU_2007_115_2_a34/ %G ru %F VSGTU_2007_115_2_a34
G. V. Pavlov; A. V. Alimov. Lagrange equations generalization for analysis of mechanical systems with inherited elements modeled by Calvin bodies. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 115 (2007) no. 2, pp. 192-194. http://geodesic.mathdoc.fr/item/VSGTU_2007_115_2_a34/
[1] O. A. Goroshko, K. Khedrikh, Analitichka dinamika (mekhanika) diskretnikh naslednikh sistema, Izdavachka Univerziteta u Nishu, 2000
[2] Radchenko V. P., Shapievskii D. V., “Analiz nelineinoi obobschennoi modeli Maksvella”, Vestn. Sam. gos. tekhn. un-ta. Ser.: Fiz.-mat. nauki, 2005, no. 38, 55–64 | DOI
[3] L. L. Makarova, V. V. Kondrashov, Dempfirovanie kolebanii v srede, modeliruemoi posledovatelnym soedineniem elementa Kelvina s parallelno soedinennymi elementami Foikhta i Dzheffrisa, Tul. gosud. un-t, Tula, 2005; Деп. в ВИНИТИ 24.06.2005. No 908-В2005
[4] Vasilenko N. V., Teoriya kolebanii, Vyssh. shk., Kiev, 1992 | Zbl