Плоские траектории в классической задаче двух неподвижных центров Эйлера
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 43 (2006) no. 43, pp. 140-145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VSGTU_2006_43_43_a19,
     author = {I. A. Gerasimov and S. V. Zhuiko},
     title = {{\CYRP}{\cyrl}{\cyro}{\cyrs}{\cyrk}{\cyri}{\cyre} {\cyrt}{\cyrr}{\cyra}{\cyre}{\cyrk}{\cyrt}{\cyro}{\cyrr}{\cyri}{\cyri} {\cyrv}~{\cyrk}{\cyrl}{\cyra}{\cyrs}{\cyrs}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyro}{\cyrishrt} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyre} {\cyrd}{\cyrv}{\cyru}{\cyrh} {\cyrn}{\cyre}{\cyrp}{\cyro}{\cyrd}{\cyrv}{\cyri}{\cyrzh}{\cyrn}{\cyrery}{\cyrh} {\cyrc}{\cyre}{\cyrn}{\cyrt}{\cyrr}{\cyro}{\cyrv} {{\CYREREV}{\cyrishrt}{\cyrl}{\cyre}{\cyrr}{\cyra}}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {140--145},
     year = {2006},
     volume = {43},
     number = {43},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2006_43_43_a19/}
}
TY  - JOUR
AU  - I. A. Gerasimov
AU  - S. V. Zhuiko
TI  - Плоские траектории в классической задаче двух неподвижных центров Эйлера
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2006
SP  - 140
EP  - 145
VL  - 43
IS  - 43
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2006_43_43_a19/
LA  - ru
ID  - VSGTU_2006_43_43_a19
ER  - 
%0 Journal Article
%A I. A. Gerasimov
%A S. V. Zhuiko
%T Плоские траектории в классической задаче двух неподвижных центров Эйлера
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2006
%P 140-145
%V 43
%N 43
%U http://geodesic.mathdoc.fr/item/VSGTU_2006_43_43_a19/
%G ru
%F VSGTU_2006_43_43_a19
I. A. Gerasimov; S. V. Zhuiko. Плоские траектории в классической задаче двух неподвижных центров Эйлера. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 43 (2006) no. 43, pp. 140-145. http://geodesic.mathdoc.fr/item/VSGTU_2006_43_43_a19/

[1] Euler L., “Probleme un corps étant attiré an raison réciproque quarree des distances vers deux points fixes donnés, trouver les cas o'u la courbe décrite par ce corps sera algébrique”, Histoiré de L'Académie Royale des sciences et Belles-lettres, 16 (1767), 228–249

[2] Gerasimov I. A., Vinnikov E. L., “Opredelenie oblastei vozmozhnykh dvizhenii v zadache dvukh nepodvizhnykh tsentrov”, Tr. GAISh, 68, 2000, 31–85

[3] Gerasimov I. A., Zhuiko S. V., “Issledovanie pervykh integralov v zadache dvukh nepodvizhnykh tsentrov L. Eilera”, Mat. modelirovanie i kraevye zadachi, Tr. Vtoroi Vseros. nauchn. konf. Ch. 3, SamGTU, Samara, 2005, 74–81