Hierarchical dynamical model of financial market near the crash point and $p$-adic mathematical analysis
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 42 (2006) no. 42, pp. 135-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VSGTU_2006_42_42_a18,
     author = {A. Kh. Bikulov and A. P. Zubarev and L. V. Kaidalova},
     title = {Hierarchical dynamical model of financial market near the crash point and $p$-adic mathematical analysis},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {135--140},
     year = {2006},
     volume = {42},
     number = {42},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2006_42_42_a18/}
}
TY  - JOUR
AU  - A. Kh. Bikulov
AU  - A. P. Zubarev
AU  - L. V. Kaidalova
TI  - Hierarchical dynamical model of financial market near the crash point and $p$-adic mathematical analysis
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2006
SP  - 135
EP  - 140
VL  - 42
IS  - 42
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2006_42_42_a18/
LA  - ru
ID  - VSGTU_2006_42_42_a18
ER  - 
%0 Journal Article
%A A. Kh. Bikulov
%A A. P. Zubarev
%A L. V. Kaidalova
%T Hierarchical dynamical model of financial market near the crash point and $p$-adic mathematical analysis
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2006
%P 135-140
%V 42
%N 42
%U http://geodesic.mathdoc.fr/item/VSGTU_2006_42_42_a18/
%G ru
%F VSGTU_2006_42_42_a18
A. Kh. Bikulov; A. P. Zubarev; L. V. Kaidalova. Hierarchical dynamical model of financial market near the crash point and $p$-adic mathematical analysis. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 42 (2006) no. 42, pp. 135-140. http://geodesic.mathdoc.fr/item/VSGTU_2006_42_42_a18/

[1] Sornette D., Kak predskazyvat krakhi finansovykh rynkov: kriticheskie sobytiya v kompleksnykh finansovykh sistemakh, Internet-treiding, M., 2003 | MR

[2] Metzler R., Klafter J., Jortner J., “Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex system”, Proc. Natl. Acad. Sci. USA, 96 (1999), 11085 | DOI

[3] Sornette D., Johansen A., “A hierarchical model of financial crashes”, Physica A, 261 (1998), 581–598 | DOI | MR

[4] Vladimirov B. C., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Fizmatlit, M., 1994 | Zbl

[5] Avetisov V. A., Bikulov A. Kh., Kozyrev S. V., Osipov V. A., “$p$-Adic Models of Ultrametric Diffusion Constrained by Hierarchical Energy Landscapes”, J. Phys. A, 35 (2002), 177 | DOI | MR | Zbl

[6] Avetisov V. A., Bikulov A. Kh., Kozyrev S. V., “Application of $p$-adic analysis to models of spontaneous breaking of replica symmetry”, Journal of Physics A, 32 (1999), 8785 | DOI | MR | Zbl

[7] Avetisov V. A., Bikulov A. Kh., Osipov V. A., “$p$-Adic description of characteristic relaxation in complex systems”, J. Phys. A, 36 (2003), 4239 | DOI | MR | Zbl