Существенно нелокальные краевые задачи для гиперболических уравнений
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 16 (2002) no. 16, pp. 36-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VSGTU_2002_16_16_a4,
     author = {M. E. Lerner},
     title = {{\CYRS}{\cyru}{\cyrshch}{\cyre}{\cyrs}{\cyrt}{\cyrv}{\cyre}{\cyrn}{\cyrn}{\cyro} {\cyrn}{\cyre}{\cyrl}{\cyro}{\cyrk}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyre} {\cyrk}{\cyrr}{\cyra}{\cyre}{\cyrv}{\cyrery}{\cyre} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyri} {\cyrd}{\cyrl}{\cyrya} {\cyrg}{\cyri}{\cyrp}{\cyre}{\cyrr}{\cyrb}{\cyro}{\cyrl}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrh} {\cyru}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrishrt}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {36--39},
     year = {2002},
     volume = {16},
     number = {16},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2002_16_16_a4/}
}
TY  - JOUR
AU  - M. E. Lerner
TI  - Существенно нелокальные краевые задачи для гиперболических уравнений
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2002
SP  - 36
EP  - 39
VL  - 16
IS  - 16
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2002_16_16_a4/
LA  - ru
ID  - VSGTU_2002_16_16_a4
ER  - 
%0 Journal Article
%A M. E. Lerner
%T Существенно нелокальные краевые задачи для гиперболических уравнений
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2002
%P 36-39
%V 16
%N 16
%U http://geodesic.mathdoc.fr/item/VSGTU_2002_16_16_a4/
%G ru
%F VSGTU_2002_16_16_a4
M. E. Lerner. Существенно нелокальные краевые задачи для гиперболических уравнений. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 16 (2002) no. 16, pp. 36-39. http://geodesic.mathdoc.fr/item/VSGTU_2002_16_16_a4/

[1] Lerner M. E., “Dve suschestvenno nelokalnye kraevye zadachi dlya uravnenii ellipticheskogo tipa”, Matematicheskoe modelirovanie i kraevye zadachi, Tr. vosmoi mezhvuz. nauch. konferentsii. Ch. 3, SamGTU, IA RF, Samara, 1998, 63–66 | MR

[2] Lerner M. E., “Suschestvenno nelokalnye kraevye zadachi dlya uravnenii ellipticheskogo, parabolicheskogo i giperbolicheskogo tipov”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 7 (1999), 178–180 | DOI

[3] Lerner M. E. Repin O. A., “Suschestvenno nelokalnaya kraevaya zadacha dlya uravnenii s chastnymi proizvodnymi”, Matem. zametki, 67:3 (2000), 478–480 | DOI | MR | Zbl

[4] Trikomi F., Lektsii po uravneniyam v chastnykh proizvodnykh, IL, M., 1957

[5] Lerner M. E., Printsipy maksimuma i kraevye zadachi dlya giperbolicheskikh uravnenii, sistem uravnenii i uravnenii smeshannogo tipa v neklassicheskikh oblastyakh, SamGTU, Samara, 2001

[6] Mikhlin S. G., Lektsii po lineinym integralnym uravneniyam, GIFML, M., 1959