The existence of odd solution for one boundary-value problem with power nonlinearity
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 4, pp. 88-96

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work we investigate a boundary value problem for a nonlinear convolution type singular integral equation on the whole axis with power nonlinearity. The above-mentioned problem has direct application in $p$-adic open-closed strings theory. We prove the existence of a rolling odd solution for the considered problem. We also establish an integral asymptotic for the constructed solution. At the end we list particular examples of the given equation, having separate interest.
Keywords: nonlinear equation, iteration, limit of solution, boundary value problem.
@article{VNGU_2018_18_4_a6,
     author = {Kh. A. Khachatryan and A. K. Kroyan},
     title = {The existence of odd solution for one boundary-value problem with power nonlinearity},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {88--96},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_4_a6/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - A. K. Kroyan
TI  - The existence of odd solution for one boundary-value problem with power nonlinearity
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2018
SP  - 88
EP  - 96
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2018_18_4_a6/
LA  - ru
ID  - VNGU_2018_18_4_a6
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A A. K. Kroyan
%T The existence of odd solution for one boundary-value problem with power nonlinearity
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2018
%P 88-96
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2018_18_4_a6/
%G ru
%F VNGU_2018_18_4_a6
Kh. A. Khachatryan; A. K. Kroyan. The existence of odd solution for one boundary-value problem with power nonlinearity. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 4, pp. 88-96. http://geodesic.mathdoc.fr/item/VNGU_2018_18_4_a6/