@article{VNGU_2018_18_4_a3,
author = {F. A. Dudkin and A. V. Treyer},
title = {Knapsack problem for {Baumslag{\textendash}Solitar} groups},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {43--55},
year = {2018},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_4_a3/}
}
F. A. Dudkin; A. V. Treyer. Knapsack problem for Baumslag–Solitar groups. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 4, pp. 43-55. http://geodesic.mathdoc.fr/item/VNGU_2018_18_4_a3/
[1] Baumslag G., Solitar D., “Some Two-Generator One-Relator Non-Hopfian Groups”, Bull. AMS, 68:3 (1962), 199–201 | DOI | MR | Zbl
[2] Myasnikov A., Nikolaev A., Ushakov A., “Knapsack Problems in Groups”, Mathematics of Computation, 84:292 (2015), 987–1016 | DOI | MR | Zbl
[3] A. L. Semenov, “Logical theories of one-place functions on the set of natural numbers”, Izv. Math., 22:3 (1984), 587–618 | DOI | MR | Zbl
[4] Lohrey M., Zetzsche G., “Knapsack in graph groups, HNN-extensions and amalgamated products”, Theory of Computing Systems, 62:1 (2018), 192–246 | DOI | MR | Zbl
[5] König D., Lohrey M., Zetzsche G., “Knapsack and Subset Sum Problems in Nilpotent, Polycyclic, and Co-Context-Free Groups”, Algebra and Computer Science, 677 (2016), 138–153 | MR
[6] Mishenko A., Treyer A., “Knapsack Problem for Nilpotent Groups”, Groups, Complexity and Cryptology, 9:1 (2017), 87–98 | MR
[7] Yu. G. Penzin, “Solvability of the theory of integers with addition, order, and multiplication by an arbitrary number”, Math. Notes, 13:5 (1973), 401–405 | DOI | MR | Zbl | Zbl
[8] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, 1977 | MR | MR | Zbl
[9] Dudkin F. A., “Subgroups of Baumslag–Solitar groups”, Algebra Logic, 48:1 (2009), 1–19 | DOI | MR | Zbl