Mots-clés : invariant torus, Poincaré mapping
@article{VNGU_2018_18_4_a1,
author = {V. P. Golubyatnikov and V. V. Ivanov},
title = {Uniqueness and stability of a cycle in three-dimensional block-linear circular gene network models},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {19--28},
year = {2018},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_4_a1/}
}
TY - JOUR AU - V. P. Golubyatnikov AU - V. V. Ivanov TI - Uniqueness and stability of a cycle in three-dimensional block-linear circular gene network models JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2018 SP - 19 EP - 28 VL - 18 IS - 4 UR - http://geodesic.mathdoc.fr/item/VNGU_2018_18_4_a1/ LA - ru ID - VNGU_2018_18_4_a1 ER -
%0 Journal Article %A V. P. Golubyatnikov %A V. V. Ivanov %T Uniqueness and stability of a cycle in three-dimensional block-linear circular gene network models %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2018 %P 19-28 %V 18 %N 4 %U http://geodesic.mathdoc.fr/item/VNGU_2018_18_4_a1/ %G ru %F VNGU_2018_18_4_a1
V. P. Golubyatnikov; V. V. Ivanov. Uniqueness and stability of a cycle in three-dimensional block-linear circular gene network models. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 4, pp. 19-28. http://geodesic.mathdoc.fr/item/VNGU_2018_18_4_a1/
[1] Glass L., Pasternack J. S., “Stable Oscillations in Mathematical Models of Biological Control Systems”, J. Math. Biol., 6 (1978), 207–223 | DOI | MR | Zbl
[2] V. A. Likhoshvai, V. P. Golubyatnikov, G. V. Demidenko, S. I. Fadeev, A. A. Evdokimov, “Theory of Gene Networks”, Computational Systems Biology, Chap. 5, Novosibirsk, 2008, 395–480 (in Russian)
[3] N. B. Ayupova, V. P. Golubyatnikov, “On the uniqueness of a cycle in an asymmetric three-dimensional model of a molecular repressilator”, J. Appl. Ind. Math., 8:2 (2014), 1–6 | DOI | MR | MR | Zbl
[4] V. P. Golubyatnikov, I. V. Golubyatnikov, “On the periodic trajectories of nonlinear dynamical systems of a special type”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:3 (2010), 3–16 (in Russian) | Zbl
[5] V. P. Golubyatnikov, V. V. Ivanov, L. S. Minushkina, “On existence of a cycle in one asymmetric gene network model”, Sib. Zh. Chist. i Prikl. Mat., 18:3 (2018), 26–32 (in Russian)
[6] V. P. Golubyatnikov, V. V. Ivanov, “Cycles in odd-dimensional models of circular gene networks”, J. Appl. Indust. Math., 12:4 (2018), 648–657 | DOI | MR | Zbl
[7] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Existence and stability of the relaxation cycle in a mathematical repressilator model”, Math. Notes, 101:1 (2017), 71–86 | DOI | DOI | MR | Zbl
[8] V. G. Demidenko, “Reconstruction of the parameters of the homogeneous linear models of the gene network dynamics”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 8:3 (2008), 51–59 (in Russian) | MR | Zbl
[9] Mischaikov K., Mrozek M., Reineck J. F., “Singular Index Pair”, J. Dynam. Differ. Equat., 11:3 (1999), 399–425 | DOI | MR
[10] E. P. Volokitin, “On limit cycles in a simple gene network model”, Sib. Zh. Ind. Mat., 7:3 (2004), 57–65 (in Russian) | MR | Zbl
[11] Yu. A. Gaidov, “On stability of periodic trajectories in some models of gene networks”, J. Appl. Indust. Math., 4:1 (2010), 43–47 | DOI | MR | Zbl
[12] Smith R. A., “Orbital stability for ordinary differential equations”, J. Differential Equations, 69 (1987), 265–287 | DOI | MR | Zbl
[13] M. V. Kazantsev, “On some properties of the domain graph of dynamical systems”, Sib. Zh. Ind. Mat., 18:4 (2015), 42–49 (in Russian) | MR