Uniqueness and stability of a cycle in three-dimensional block-linear circular gene network models
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 4, pp. 19-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study dynamics of three-dimensional autonomous systems which model circular gene network functioning regulated by negative feedbacks realized by step-functions. We prove that such a system has at most one cycle, and if this cycle does exist, then it is stable in Lyapunov's sense and it attracts all trajectories of the system except for two of them, which pass through the singular point of the system. The proofs of the main results reduce to studies of existence, uniqueness and geometry structure of the second fixed point of 2-dimensional monotonic mapping with monotonic derivatives.
Keywords: circular gene networks, feedbacks, Hill's functions, Heaviside's step functions, monotonic mappings, second fixed point, limit cycle, exponential Lyapunov's stability.
Mots-clés : invariant torus, Poincaré mapping
@article{VNGU_2018_18_4_a1,
     author = {V. P. Golubyatnikov and V. V. Ivanov},
     title = {Uniqueness and stability of a cycle in three-dimensional block-linear circular gene network models},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {19--28},
     year = {2018},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_4_a1/}
}
TY  - JOUR
AU  - V. P. Golubyatnikov
AU  - V. V. Ivanov
TI  - Uniqueness and stability of a cycle in three-dimensional block-linear circular gene network models
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2018
SP  - 19
EP  - 28
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2018_18_4_a1/
LA  - ru
ID  - VNGU_2018_18_4_a1
ER  - 
%0 Journal Article
%A V. P. Golubyatnikov
%A V. V. Ivanov
%T Uniqueness and stability of a cycle in three-dimensional block-linear circular gene network models
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2018
%P 19-28
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2018_18_4_a1/
%G ru
%F VNGU_2018_18_4_a1
V. P. Golubyatnikov; V. V. Ivanov. Uniqueness and stability of a cycle in three-dimensional block-linear circular gene network models. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 4, pp. 19-28. http://geodesic.mathdoc.fr/item/VNGU_2018_18_4_a1/

[1] Glass L., Pasternack J. S., “Stable Oscillations in Mathematical Models of Biological Control Systems”, J. Math. Biol., 6 (1978), 207–223 | DOI | MR | Zbl

[2] V. A. Likhoshvai, V. P. Golubyatnikov, G. V. Demidenko, S. I. Fadeev, A. A. Evdokimov, “Theory of Gene Networks”, Computational Systems Biology, Chap. 5, Novosibirsk, 2008, 395–480 (in Russian)

[3] N. B. Ayupova, V. P. Golubyatnikov, “On the uniqueness of a cycle in an asymmetric three-dimensional model of a molecular repressilator”, J. Appl. Ind. Math., 8:2 (2014), 1–6 | DOI | MR | MR | Zbl

[4] V. P. Golubyatnikov, I. V. Golubyatnikov, “On the periodic trajectories of nonlinear dynamical systems of a special type”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:3 (2010), 3–16 (in Russian) | Zbl

[5] V. P. Golubyatnikov, V. V. Ivanov, L. S. Minushkina, “On existence of a cycle in one asymmetric gene network model”, Sib. Zh. Chist. i Prikl. Mat., 18:3 (2018), 26–32 (in Russian)

[6] V. P. Golubyatnikov, V. V. Ivanov, “Cycles in odd-dimensional models of circular gene networks”, J. Appl. Indust. Math., 12:4 (2018), 648–657 | DOI | MR | Zbl

[7] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Existence and stability of the relaxation cycle in a mathematical repressilator model”, Math. Notes, 101:1 (2017), 71–86 | DOI | DOI | MR | Zbl

[8] V. G. Demidenko, “Reconstruction of the parameters of the homogeneous linear models of the gene network dynamics”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 8:3 (2008), 51–59 (in Russian) | MR | Zbl

[9] Mischaikov K., Mrozek M., Reineck J. F., “Singular Index Pair”, J. Dynam. Differ. Equat., 11:3 (1999), 399–425 | DOI | MR

[10] E. P. Volokitin, “On limit cycles in a simple gene network model”, Sib. Zh. Ind. Mat., 7:3 (2004), 57–65 (in Russian) | MR | Zbl

[11] Yu. A. Gaidov, “On stability of periodic trajectories in some models of gene networks”, J. Appl. Indust. Math., 4:1 (2010), 43–47 | DOI | MR | Zbl

[12] Smith R. A., “Orbital stability for ordinary differential equations”, J. Differential Equations, 69 (1987), 265–287 | DOI | MR | Zbl

[13] M. V. Kazantsev, “On some properties of the domain graph of dynamical systems”, Sib. Zh. Ind. Mat., 18:4 (2015), 42–49 (in Russian) | MR