Construction of geodesics circle for surfaces of revolution of constant Gaussian curvature
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 3, pp. 64-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The investigation of geodesic lines is connected with the need to solve a system of nonlinear differential equations. For surfaces of revolution this system reduces to a single differential equation of the second order. The work is devoted to the construction of geodesic lines for surfaces of revolution of constant Gaussian curvature. The surfaces of rotation of constant negative Gaussian curvature are the Minging top, the Minding coil, the pseudosphere (Beltrami surface). There are also three types of surfaces of constant positive Gaussian curvature. The studied surfaces and their geodesics are described by means of elliptic integrals. Using a mathematical package, the surfaces of rotation of constant Gaussian curvature and their geodesics are constructed.
Keywords: surfaces of revolution, Gaussian curvature, geodesic circles, elliptic integrals.
@article{VNGU_2018_18_3_a6,
     author = {M. A. Cheshkova},
     title = {Construction of geodesics circle for surfaces of revolution of constant {Gaussian} curvature},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {64--74},
     year = {2018},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a6/}
}
TY  - JOUR
AU  - M. A. Cheshkova
TI  - Construction of geodesics circle for surfaces of revolution of constant Gaussian curvature
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2018
SP  - 64
EP  - 74
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a6/
LA  - ru
ID  - VNGU_2018_18_3_a6
ER  - 
%0 Journal Article
%A M. A. Cheshkova
%T Construction of geodesics circle for surfaces of revolution of constant Gaussian curvature
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2018
%P 64-74
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a6/
%G ru
%F VNGU_2018_18_3_a6
M. A. Cheshkova. Construction of geodesics circle for surfaces of revolution of constant Gaussian curvature. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 3, pp. 64-74. http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a6/

[1] Alekseevskii D. V., Vinberg E. B, Solodovnikov A. S., “Geometry of spaces of constant curvature”, Itogi Nauki i Tekhniki. Series: Modern problems of mathematics. Fundamental directions, 29 (1988), 5–146 (in Russian)

[2] J. Wolff, Space of Constant Curvature, Nauka, M., 1962 (in Russian)

[3] Gromol D., Klingenberg V., Meyer V. L., Riemannsche Geometrie in Grossen, Mir, M., 1971 (in Russian)

[4] Krivoshapko S. N., Ivanov V. N., Khalabi S. M., Analytic surfaces, M., 2006 (in Russian)

[5] Bodrenko A. I, Bodrenko I. I., “Modulation of regular surfaces and geodetic lines in applied topographic and geodetic and navigational problems”, South Siberian Scientific Bulletin, 2014, no. 2(6), 21–23 (in Russian)

[6] Bukhtyak M. S, “Modulation of regular surfaces and geodetic lines in applied topographic and geodetic and navigational problems”, Tomck State University J. of Mathematics and Mechanics, 2015, no. 5(37), 5–19 (in Russian)

[7] Phillipova O. V., “Construction of geodesics on surfaces of revolution in Maple”, Bull. of Barnaul State Ped. Institute, 2003, no. 3(3), 37–39 (in Russian)

[8] Kobayashi Sh., Nomizu K. L., Riemannsche Geometrie in Grossen, v. 2, Nauka, M., 1981 (in Russian) | MR

[9] Kagan V. F., Fundamentals of the Theory of Surfaces in the Tensor Exposition, v. 2, GINTL, M., 1948 (in Russian)

[10] Minding F., “On the internal geometry of surfaces”, The Collection of Classical Works on the Geometry of Lobachevsky and the Development of her Ideas, ed. A. P. Norden, M., 1956, 162–179 (in Russian)

[11] Kagan V. F., Fundamentals of the Theory of Surfaces in the Tensor Exposition, v. 1, GINTL, M., 1947 (in Russian)