Once more on the direct and inverse limits of retractive spectra
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 3, pp. 60-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that any $\forall\exists$-formula which is true on the inverse limit of retractive spector of algebras is true on the direct limit of this spector. We obtain some consecuences from this allegation relative definable functions.
Keywords: retractive spector, direct and inverse limits, definable functions.
@article{VNGU_2018_18_3_a5,
     author = {A. G. Pinus},
     title = {Once more on the direct and inverse limits of retractive spectra},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {60--63},
     year = {2018},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a5/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - Once more on the direct and inverse limits of retractive spectra
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2018
SP  - 60
EP  - 63
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a5/
LA  - ru
ID  - VNGU_2018_18_3_a5
ER  - 
%0 Journal Article
%A A. G. Pinus
%T Once more on the direct and inverse limits of retractive spectra
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2018
%P 60-63
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a5/
%G ru
%F VNGU_2018_18_3_a5
A. G. Pinus. Once more on the direct and inverse limits of retractive spectra. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 3, pp. 60-63. http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a5/

[1] A. G. Pinus, “On direct and inverse limits of retractive spectra”, Sib. Math. J., 58:6 (2017), 1067–1070 | DOI | MR | Zbl

[2] Yu. L. Ershov, Decisibility Problems and Constructive Models, Nauka, M., 1980 (in Russian)

[3] A. G. Pinus, “Fragments of functional clones”, Algebra and Logic, 56:4 (2017), 318–323 | DOI | MR | Zbl