Comparison of the methods of parametric identification of linear dynamical systems under mixed noise
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 3, pp. 45-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we study the possibility of comparison of parametric identification methods by the sensitivity theory via local expansions of the objective functions using as an example three identification methods. The theoretical results are verified by computational identification of the equations of longitudinal motion of the aircraft which parameters are identified by a) the linear least-squares method, b) the method of instrumental variables in frequency domain, c) the variational method (closely related to the STLS and GTLS methods). The simulation used a mixed additive noise: in the observations and in the residuals of the model equations.
Keywords: linear dynamic systems, parameter identification, sensitivity functions, mixed noise.
@article{VNGU_2018_18_3_a4,
     author = {A. A. Lomov and A. V. Fedoseev},
     title = {Comparison of the methods of parametric identification of linear dynamical systems under mixed noise},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {45--59},
     year = {2018},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a4/}
}
TY  - JOUR
AU  - A. A. Lomov
AU  - A. V. Fedoseev
TI  - Comparison of the methods of parametric identification of linear dynamical systems under mixed noise
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2018
SP  - 45
EP  - 59
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a4/
LA  - ru
ID  - VNGU_2018_18_3_a4
ER  - 
%0 Journal Article
%A A. A. Lomov
%A A. V. Fedoseev
%T Comparison of the methods of parametric identification of linear dynamical systems under mixed noise
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2018
%P 45-59
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a4/
%G ru
%F VNGU_2018_18_3_a4
A. A. Lomov; A. V. Fedoseev. Comparison of the methods of parametric identification of linear dynamical systems under mixed noise. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 3, pp. 45-59. http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a4/

[1] Fisher R. A., “On an Absolute Criterion for Fitting Frequency Curves”, Messenger of Mathematics, 41 (1912), 155–160 | Zbl

[2] Lemmerling P., Moor De B., “Misfit Versus Latency”, Automatica, 37 (2001), 2057–2067 | DOI | Zbl

[3] A. F. Izmailov, Sensitivity in Optimization, Fizmatlit, M., 2006 (in Russian)

[4] A. A. Lomov, “Comparison of methods for estimating the parameters of linear dynamic systems by measurements of short sections of transient processes”, Automation and Remote Control, 66:3 (2005), 373–381 | DOI | MR | Zbl

[5] A. A. Lomov, “On quantitative a priori measures of identifiability of coefficients of linear dynamic systems”, J. of Comp. and System Sci. Int., 50:1 (2011), 1–13 | DOI | MR | Zbl

[6] Kruglov I., Mishulina O., Bakirov M., “Quantile Based Decision Making Rule of the Neural Networks Committee for Ill-Posed Approximation Problems”, Neurocomputing, 96 (2012), 74–82 | DOI

[7] A. A. Lomov, “Local stability in the problem of identifying coefficients of a linear difference equation”, J. of Math. Sci., 188:4 (2013), 410–434 | DOI | MR | Zbl

[8] Klein V., Morelli E. A., Aircraft System Identification. Theory and Practice, AIAA, 2006

[9] Larsson R., Enqvist M., “Sequential Aerodynamic Model Parameter Identification”, 16$^\textup{th}$ IFAC Symposium on System Identification (Brussels, Belgium, 2012), 1413–1418

[10] A. O. Yegorshin, “Least squares method and fast algorithms in variational problems of identification and filtration (VI method)”, Avtometriya, 1988, no. 1, 30–42 (in Russian)

[11] Osborne M. R., Smyth G. K., “A Modified Prony Algorithm for Fitting Functions Defined by Difference Equations”, SIAM J. Sci. Statist. Comput., 12 (1991), 362–382 | DOI | MR | Zbl

[12] A. A. Lomov, “Variational identification methods for linear dynamic systems and the local extrema problem”, Upravlenie Bol'shimi Bistemami, 39 (2012), 53–94 (in Russian)

[13] Moor De B., “Structured Total Least Squares and $L_{2}$ Approximation Problems”, Linear Algebra Appl., 188–189 (1993), 163–207 | DOI | MR

[14] Roorda B., Heij C., “Global Total Least Squares Modelling of Multivariable Time Series”, IEEE Trans. on Automatic Control, AC-40 (1995), 50–63 | DOI | MR | Zbl

[15] A. A. Lomov, “On the asymptotic optimality of the orthoregressional estimators”, J. Appl. Ind. Math., 10:4 (2016), 511–519 | DOI | MR | Zbl

[16] E. R. Alekseev, O. V. Chesnokova, E. A. Rudchenko, Scilab. Solution of Engineering and Mathematical Problems, BINOM, M., 2008 (in Russian)

[17] A. A. Lomov, “Estimation of trends and identification of time series dynamics in short observation sections”, J. of Computer and Systems Sci. Int., 48:1 (2009), 1–13 | DOI | MR | Zbl