On unsolvable $Q$-theories of ring varieties
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 3, pp. 20-26

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{M}$ be any proper variety of associative rings. We prove that there exists an infinite set of varieties of associative rings containing $\mathcal{M}$ with unsolvable $Q$-theories. In particular, this result is a positive solution to the Mal'cev problem from the Kourovka Notebook on the existence of such varieties.
Keywords: quasivariety, variety, $Q$-theory, solvability, universal algebra, ring, Lee ring.
@article{VNGU_2018_18_3_a1,
     author = {A. I. Budkin},
     title = {On unsolvable $Q$-theories of ring varieties},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {20--26},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a1/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - On unsolvable $Q$-theories of ring varieties
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2018
SP  - 20
EP  - 26
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a1/
LA  - ru
ID  - VNGU_2018_18_3_a1
ER  - 
%0 Journal Article
%A A. I. Budkin
%T On unsolvable $Q$-theories of ring varieties
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2018
%P 20-26
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a1/
%G ru
%F VNGU_2018_18_3_a1
A. I. Budkin. On unsolvable $Q$-theories of ring varieties. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 3, pp. 20-26. http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a1/