On unsolvable $Q$-theories of ring varieties
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 3, pp. 20-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathcal{M}$ be any proper variety of associative rings. We prove that there exists an infinite set of varieties of associative rings containing $\mathcal{M}$ with unsolvable $Q$-theories. In particular, this result is a positive solution to the Mal'cev problem from the Kourovka Notebook on the existence of such varieties.
Keywords: quasivariety, variety, $Q$-theory, solvability, universal algebra, ring, Lee ring.
@article{VNGU_2018_18_3_a1,
     author = {A. I. Budkin},
     title = {On unsolvable $Q$-theories of ring varieties},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {20--26},
     year = {2018},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a1/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - On unsolvable $Q$-theories of ring varieties
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2018
SP  - 20
EP  - 26
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a1/
LA  - ru
ID  - VNGU_2018_18_3_a1
ER  - 
%0 Journal Article
%A A. I. Budkin
%T On unsolvable $Q$-theories of ring varieties
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2018
%P 20-26
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a1/
%G ru
%F VNGU_2018_18_3_a1
A. I. Budkin. On unsolvable $Q$-theories of ring varieties. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 3, pp. 20-26. http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a1/

[1] Unsolved Problems in Group Theory, The Kourovka Notebook, 17$^{th}$ ed., Institute of Mathematics SO RAN, Novosibirsk, 2010 (in Russian)

[2] V. Yu. Popov, “Undecidability of the word problem in relatively free rings”, Mat. Zametki, 67:4 (2000), 582–594 (in Russian) | DOI | Zbl

[3] A. I. Budkin, “The affirmative solution of the A. I. Mal'cev problem on the unsolvability of $Q-$theories”, Izv. Altay State University, 65:1-1 (2010), 16–17 (in Russian)

[4] A. I. Mal'cev, Algebraic Systems, Springer-Verlag, New York–Heidelberg–Berlin, 1973 | MR | MR

[5] A. I. Budkin, Quasivarieties of Groups, Izd-vo of Altay State University, Barnaul, 2002 (in Russian)

[6] A. I. Mal'cev, Algorithms and Recursive Functions, Nauka, M., 1986 (in Russian) | MR

[7] L. A. Bokut', “Unsolvability of the equality problem and subalgebras of finitely presented Lie algebras”, Izv. Akad. Nauk SSSR Ser. Mat., 36:6 (1972), 1173–1219 (in Russian) | Zbl

[8] Post E. L., “Recursive Unsolvability of a Problem of Thue”, J. Symbolic Logic, 12:1 (1947), 1–11 | DOI | MR | Zbl

[9] A. A. Markov, “The theory of algorithms”, Trudy Mat. Inst. Steklov, 42, 1954, 3–375 (in Russian) | MR

[10] G. S. Tseitin, “An associative calculus with an insoluble problem of equivalence”, Trudy Mat. Inst. Steklov, 52, 1958, 172–189 (in Russian) | MR