Cauchy problem for a differential equation with piecewise smooth characteristics
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 3, pp. 3-19
Cet article a éte moissonné depuis la source Math-Net.Ru
The Cauchy problem is considered for an equation with first order partial derivatives and two independent variables. One of the coefficients multiplied by a partial derivative is assumed to be discontinuous. Therefore characteristics are proved to be piecewise smooth lines and hence the generalized solution of the Cauchy problem have specific properties. In particular, it is discontinuous in a certain domain and indefinite in another domain. Importance of such investigations is connected with possible applications of results in theory of probing.
Keywords:
differential equations, Cauchy problem, discontinuous coefficients, uniqueness, probing.
Mots-clés : existence
Mots-clés : existence
@article{VNGU_2018_18_3_a0,
author = {D. S. Anikonov and D. S. Konovalova},
title = {Cauchy problem for a differential equation with piecewise smooth characteristics},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {3--19},
year = {2018},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a0/}
}
TY - JOUR AU - D. S. Anikonov AU - D. S. Konovalova TI - Cauchy problem for a differential equation with piecewise smooth characteristics JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2018 SP - 3 EP - 19 VL - 18 IS - 3 UR - http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a0/ LA - ru ID - VNGU_2018_18_3_a0 ER -
D. S. Anikonov; D. S. Konovalova. Cauchy problem for a differential equation with piecewise smooth characteristics. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/VNGU_2018_18_3_a0/