On the moment characteristics of ladder variables
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 2, pp. 53-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present an algorithm for finding exact relations connecting the moments of ladder values with the moments of increments of a random walk. As an example, using this algorithm, we find the corresponding relations for moments of order no more than three. The algorithm is based on the use of properties of factorization identities.
Keywords: random walk, ladder epoch, ladder height, factorization method.
@article{VNGU_2018_18_2_a4,
     author = {V. I. Lotov},
     title = {On the moment characteristics of ladder variables},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {53--59},
     year = {2018},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_2_a4/}
}
TY  - JOUR
AU  - V. I. Lotov
TI  - On the moment characteristics of ladder variables
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2018
SP  - 53
EP  - 59
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2018_18_2_a4/
LA  - ru
ID  - VNGU_2018_18_2_a4
ER  - 
%0 Journal Article
%A V. I. Lotov
%T On the moment characteristics of ladder variables
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2018
%P 53-59
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2018_18_2_a4/
%G ru
%F VNGU_2018_18_2_a4
V. I. Lotov. On the moment characteristics of ladder variables. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 2, pp. 53-59. http://geodesic.mathdoc.fr/item/VNGU_2018_18_2_a4/

[1] A. A. Borovkov, Probability Theory, Springer, London, 2013 | MR | Zbl

[2] Gut A., Stopped Random Walks, Springer, 1988 | MR | Zbl