@article{VNGU_2018_18_2_a3,
author = {M. V. Dorzhieva},
title = {Friedberg numbering of the family of {All} $\Sigma^{1}_{2}$-sets},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {47--52},
year = {2018},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_2_a3/}
}
M. V. Dorzhieva. Friedberg numbering of the family of All $\Sigma^{1}_{2}$-sets. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 2, pp. 47-52. http://geodesic.mathdoc.fr/item/VNGU_2018_18_2_a3/
[1] S. Goncharov, J. F. Knight, “Computable structure and non-structure theorems”, Algebra Logika, 41:6 (2002), 639–681 (in Russian) | MR | Zbl
[2] Friedberg R. M., “Three theorems on recursive enumeration”, J. of Symbolic Logic, 23:3 (1958), 309–316 | DOI | MR
[3] Yu. L. Ershov, Numeration Theory, Nauka, M., 1977 (in Russian) | MR
[4] Kummer M., “Some Applications of Computable One-One Numberings”, Arch. Math. Logic, 30:4 (1990), 219–230 | DOI | MR | Zbl
[5] Kummer M., “Recursive Enumeration without Repetition Revisited”, Recursion Theory Week (Oberwolfach, 1989), Lecture Notes in Math., 1432, Springer, Berlin, 1990, 255–275 | DOI | MR
[6] S. S. Goncharov, A. Sorbi, “Generalised computable numerations and non-trival Rogers semilattices”, Algebra and Logic, 36:6 (1997), 359–369 | DOI | MR | Zbl
[7] Badaev S., Goncharov S., “Computability and Numberings”, New Computational Paradigms, Springer, N. Y., 2008, 19–34 | DOI | MR | Zbl
[8] S. Goncharov, S. Lempp, D. R. Solomon, “Friedberg numberings of families of $n$-computably enumerable sets”, Algebra i Logika, 41:2 (2002), 143–154 (in Russian) | MR | Zbl
[9] Badaev S., Manat M., Sorbi A., “Friedberg Numberings in the Ershov Hierarchy”, Arch. Math. Logic, 54:1–2 (2015), 59–73 | DOI | MR | Zbl
[10] Owings J. C., jr., “The Meta-$r.e.$ Sets, but not the $\Pi_{1}^{1}$ Sets, Can be Enumerated without Repetition”, J. of Symbolic Logic, 35:2 (1970), 223–229 | DOI | MR | Zbl
[11] M. V. Dorzhieva, “Metarecursion elimination from Owings theorem”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:1 (2014), 35–43 (in Russian) | Zbl
[12] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, N. Y., 1967 | MR | Zbl