Duhamel's method in inverse problems for the wave equation. I
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 2, pp. 30-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to inverse problems of recovering the time dependent source and coefficients of the wave equation. The mixed problem with the Neumann boundary condition is considered. A certain weighted boundary integral with solution in question is used as overdetermination. To determine unknown source we use Duhamel’s method and get a Volterra type equation of the first and second kind. The kernel of this equation depends depends on the solution to an auxiliary mixed problem and the secodn order derivatives of the solution. A local boundary straightening and a special change of variables are used to get necessary estimates. To determine unknown time dependent coefficients we use the successive approximation method and contraction mapping principle.
Keywords: inverse problem, wave equation.
@article{VNGU_2018_18_2_a2,
     author = {A. N. Artyushin},
     title = {Duhamel's method in inverse problems for the wave {equation.~I}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {30--46},
     year = {2018},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_2_a2/}
}
TY  - JOUR
AU  - A. N. Artyushin
TI  - Duhamel's method in inverse problems for the wave equation. I
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2018
SP  - 30
EP  - 46
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2018_18_2_a2/
LA  - ru
ID  - VNGU_2018_18_2_a2
ER  - 
%0 Journal Article
%A A. N. Artyushin
%T Duhamel's method in inverse problems for the wave equation. I
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2018
%P 30-46
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2018_18_2_a2/
%G ru
%F VNGU_2018_18_2_a2
A. N. Artyushin. Duhamel's method in inverse problems for the wave equation. I. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 2, pp. 30-46. http://geodesic.mathdoc.fr/item/VNGU_2018_18_2_a2/

[1] A. I. Kozhanov, “On the solvability of certain nonlocal and related inverse problems for parabolic equations”, Mat. Zametki YaGU, 18:2 (2011), 64–78 (in Russian) | Zbl

[2] Slodička M., “Determination of a Solely Time-Dependent Source in a Semilinear Parabolic Problem by Means of Boundary Measurements”, J. Comput. Appl. Math., 289 (2015), 433–440 | DOI | MR | Zbl

[3] A. I. Prilepko, D. G. Orlovsky, “Determining a parameter of an evolution equation and inverse problems in mathematical physics. Part I”, Differ. Equ., 21:1 (1985), 119–129 (in Russian) | MR | Zbl

[4] A. I. Prilepko, D. G. Orlovsky, “Determining a parameter of an evolution equation and inverse problems in mathematical physics. Part III”, Differ. Equ., 23:8 (1987), 1343–1353 (in Russian) | MR | Zbl

[5] S. S. Pavlov, “Nolinear inverse problems for many-dimensional hyperbolic equations with integral overdetermination”, Mat. Zametki YaGU, 18:2 (2011), 128–154 (in Russian) | MR

[6] R. R. Safiullova, “Inverse problems for the second order hyperbolic equation with unknown time depended coefficient”, Bull. of the South Ural State Uni., 6:4 (2013), 73–86 | Zbl

[7] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Nauka, M., 1973 (in Russian)

[8] Isakov V., Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 127, 2$^\text{nd}$ ed., Springer-Verlag, 2006 | MR | Zbl

[9] O. A. Ladyzhenskaya, The Mixed Problem for Hyperbolic Equation, Gostehizdat, M., 1953 (in Russian) | MR

[10] R. Kurant, D. Hilbert, Methods of Mathematical Physics, v. 2, OGIZ, M., 1945 (in Russian)