@article{VNGU_2018_18_2_a2,
author = {A. N. Artyushin},
title = {Duhamel's method in inverse problems for the wave {equation.~I}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {30--46},
year = {2018},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_2_a2/}
}
A. N. Artyushin. Duhamel's method in inverse problems for the wave equation. I. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 2, pp. 30-46. http://geodesic.mathdoc.fr/item/VNGU_2018_18_2_a2/
[1] A. I. Kozhanov, “On the solvability of certain nonlocal and related inverse problems for parabolic equations”, Mat. Zametki YaGU, 18:2 (2011), 64–78 (in Russian) | Zbl
[2] Slodička M., “Determination of a Solely Time-Dependent Source in a Semilinear Parabolic Problem by Means of Boundary Measurements”, J. Comput. Appl. Math., 289 (2015), 433–440 | DOI | MR | Zbl
[3] A. I. Prilepko, D. G. Orlovsky, “Determining a parameter of an evolution equation and inverse problems in mathematical physics. Part I”, Differ. Equ., 21:1 (1985), 119–129 (in Russian) | MR | Zbl
[4] A. I. Prilepko, D. G. Orlovsky, “Determining a parameter of an evolution equation and inverse problems in mathematical physics. Part III”, Differ. Equ., 23:8 (1987), 1343–1353 (in Russian) | MR | Zbl
[5] S. S. Pavlov, “Nolinear inverse problems for many-dimensional hyperbolic equations with integral overdetermination”, Mat. Zametki YaGU, 18:2 (2011), 128–154 (in Russian) | MR
[6] R. R. Safiullova, “Inverse problems for the second order hyperbolic equation with unknown time depended coefficient”, Bull. of the South Ural State Uni., 6:4 (2013), 73–86 | Zbl
[7] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Nauka, M., 1973 (in Russian)
[8] Isakov V., Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 127, 2$^\text{nd}$ ed., Springer-Verlag, 2006 | MR | Zbl
[9] O. A. Ladyzhenskaya, The Mixed Problem for Hyperbolic Equation, Gostehizdat, M., 1953 (in Russian) | MR
[10] R. Kurant, D. Hilbert, Methods of Mathematical Physics, v. 2, OGIZ, M., 1945 (in Russian)