The theorem on the decomposition of linear operators and the asymptotic behavior of the eigenvalues of difference operators with a growing potential
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 1, pp. 91-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a difference operator with a growing potential in the Hilbert space of square summable complex bilateral sequences and study the asymptotic behavior of eigenvalues under three different conditions on the potential. The main results are btained by using the decomposition method of similar operators.
Keywords: difference operator, eigenvalues, eigenvectors, spectral projection, method of similar operators, the operator splitting.
@article{VNGU_2018_18_1_a7,
     author = {N. B. Uskova and G. V. Garkavenko},
     title = {The theorem on the decomposition of linear operators and the asymptotic behavior of the eigenvalues of difference operators with a growing potential},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {91--106},
     year = {2018},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a7/}
}
TY  - JOUR
AU  - N. B. Uskova
AU  - G. V. Garkavenko
TI  - The theorem on the decomposition of linear operators and the asymptotic behavior of the eigenvalues of difference operators with a growing potential
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2018
SP  - 91
EP  - 106
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a7/
LA  - ru
ID  - VNGU_2018_18_1_a7
ER  - 
%0 Journal Article
%A N. B. Uskova
%A G. V. Garkavenko
%T The theorem on the decomposition of linear operators and the asymptotic behavior of the eigenvalues of difference operators with a growing potential
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2018
%P 91-106
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a7/
%G ru
%F VNGU_2018_18_1_a7
N. B. Uskova; G. V. Garkavenko. The theorem on the decomposition of linear operators and the asymptotic behavior of the eigenvalues of difference operators with a growing potential. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 1, pp. 91-106. http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a7/

[1] B. Musilimov, M. Otelbaev, “Estimation of the least eigenvalues for the matrix class corresponding to the Sturm-Liouville difference equation”, Zh. Vychisl. Mat. Mat. Fiz., 21:6 (1981), 1430–1434 (in Russian) | Zbl

[2] A. G. Baskakov, “Semigroups of difference operators in spectral analysis of linear differential operators”, Funct. Anal. Appl., 30:3 (1996), 149–157 | DOI | DOI | MR | Zbl

[3] A. G. Baskakov, “Linear differential operators with unbounded operator coefficients and semigroups of bounded operators”, Math. Notes, 59:5–6 (1996), 586–593 | DOI | DOI | MR | Zbl

[4] A. G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russ. Math. Surv., 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl

[5] A. G. Baskakov, V. B. Didenko, “Spectral analysis of differential operators with unbounded periodic coefficients”, Differ. Equ., 51:3 (2015), 325–341 | DOI | DOI | MR | Zbl

[6] A. G. Baskakov, A. Yu. Duplischeva, “Difference operators and operator-valued matrices of the second order”, Izv. Akad. Nauk. Ser. Mat., 79:2 (2015), 3–20 (in Russian) | DOI

[7] M. S. Bichegkuev, “Spectral analysis of difference and differential operators in weighted spaces”, Mat. Sb., 204:11 (2013), 1549–1564 | DOI | DOI | MR | Zbl

[8] M. S. Bichegkuev, “Solvability conditions for the difference equations with an initial condition in a subspace”, Sib. Math. J., 51:4 (2010), 595–609 | DOI | MR | Zbl

[9] A. G. Baskakov, Harmonic Analysis of the Linear Operators, VGU, Voronezh, 1987 (in Russian) | MR

[10] A. G. Baskakov, “Method of abstract harmonic analisis in theory of linear operators”, Sib. Math. J., 24:1 (1983), 17–32 | DOI | MR

[11] A. G. Baskakov, “A theorem on decomposition of an operator, and some related questions in the analytic theory of perturbations”, Izv. Math., 28:3 (1987), 421–444 | DOI | Zbl

[12] A. G. Baskakov, “Splitting of perturbation differential operators with unbounded operator coefficients”, Fundam. Prikl. Mat., 8:1 (2002), 1–16 (in Russian)

[13] A. G. Baskakov, “Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations”, Mat. Sb., 206:8 (2015), 1049–1086 | DOI | DOI | MR | Zbl

[14] A. G. Baskakov, A. V. Derbushev, A. O. Shcherbakov, “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Math., 75:3 (2011), 445–469 | DOI | DOI | MR | Zbl

[15] N. B. Uskova, “On a result of R. Turner”, Math. Notes, 76:6 (2004), 844–854 | DOI | DOI | MR | Zbl

[16] N. B. Uskova, “On estimates for spectral projections of perturbed selfadjoint operators”, Sib. Math. J., 41:3 (2000), 591–600 | DOI | MR | Zbl

[17] D. M. Polyakov, “Spectral analysis of a fourth-order nonselfadjoint operator with nonsmooth coefficients”, Sib. Math. J., 56:1 (2015), 138–154 | DOI | MR | Zbl

[18] N. B. Uskova, “On spectral properties of Sturm–Liouville operator with matrix potential”, Ufa Math. J., 7:3 (2015), 84–94 | DOI | MR | Zbl

[19] N. B. Uskova, “On the spectral properties of a second-order differential operator with a matrix potential”, Differ. Equ., 52:5 (2016), 557–567 | DOI | MR | Zbl

[20] A. G. Baskakov, “Estimates for the elements of inverse matrices, and the spectral analysis of linear operators”, Izv. Math., 61:6 (1997), 1113–1135 | DOI | DOI | MR | Zbl

[21] Yu. L. Daletsky, M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Nauka, M., 1970 (in Russian) | MR

[22] N. B. Uskova, “On the spectrum of some classes of differential operators”, Differ. Equ., 30:2 (1994), 328–330 | MR | Zbl

[23] G. V. Garkavenko, “On diagonalization of certain classes of linear operators”, Izv. Vyssh. Uchebn. Zaved., Mat., 1994, no. 11, 14–19 (in Russian)

[24] N. B. Uskova, “On the method of similar operators in Banach algebras”, Izv. Vyssh. Uchebn. Zaved., Mat., 2005, no. 3, 79–85 (in Russian)

[25] N. B. Uskova, “Estimates for spectral expansions of eigenvectors for some classes of perturbed differential operators”, Differ. Equ., 33:4 (1997), 571–574 | MR | Zbl

[26] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Nauka, M., 1997 (in Russian)

[27] W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., 1973 | MR | Zbl