@article{VNGU_2018_18_1_a7,
author = {N. B. Uskova and G. V. Garkavenko},
title = {The theorem on the decomposition of linear operators and the asymptotic behavior of the eigenvalues of difference operators with a growing potential},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {91--106},
year = {2018},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a7/}
}
TY - JOUR AU - N. B. Uskova AU - G. V. Garkavenko TI - The theorem on the decomposition of linear operators and the asymptotic behavior of the eigenvalues of difference operators with a growing potential JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2018 SP - 91 EP - 106 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a7/ LA - ru ID - VNGU_2018_18_1_a7 ER -
%0 Journal Article %A N. B. Uskova %A G. V. Garkavenko %T The theorem on the decomposition of linear operators and the asymptotic behavior of the eigenvalues of difference operators with a growing potential %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2018 %P 91-106 %V 18 %N 1 %U http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a7/ %G ru %F VNGU_2018_18_1_a7
N. B. Uskova; G. V. Garkavenko. The theorem on the decomposition of linear operators and the asymptotic behavior of the eigenvalues of difference operators with a growing potential. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 1, pp. 91-106. http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a7/
[1] B. Musilimov, M. Otelbaev, “Estimation of the least eigenvalues for the matrix class corresponding to the Sturm-Liouville difference equation”, Zh. Vychisl. Mat. Mat. Fiz., 21:6 (1981), 1430–1434 (in Russian) | Zbl
[2] A. G. Baskakov, “Semigroups of difference operators in spectral analysis of linear differential operators”, Funct. Anal. Appl., 30:3 (1996), 149–157 | DOI | DOI | MR | Zbl
[3] A. G. Baskakov, “Linear differential operators with unbounded operator coefficients and semigroups of bounded operators”, Math. Notes, 59:5–6 (1996), 586–593 | DOI | DOI | MR | Zbl
[4] A. G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russ. Math. Surv., 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl
[5] A. G. Baskakov, V. B. Didenko, “Spectral analysis of differential operators with unbounded periodic coefficients”, Differ. Equ., 51:3 (2015), 325–341 | DOI | DOI | MR | Zbl
[6] A. G. Baskakov, A. Yu. Duplischeva, “Difference operators and operator-valued matrices of the second order”, Izv. Akad. Nauk. Ser. Mat., 79:2 (2015), 3–20 (in Russian) | DOI
[7] M. S. Bichegkuev, “Spectral analysis of difference and differential operators in weighted spaces”, Mat. Sb., 204:11 (2013), 1549–1564 | DOI | DOI | MR | Zbl
[8] M. S. Bichegkuev, “Solvability conditions for the difference equations with an initial condition in a subspace”, Sib. Math. J., 51:4 (2010), 595–609 | DOI | MR | Zbl
[9] A. G. Baskakov, Harmonic Analysis of the Linear Operators, VGU, Voronezh, 1987 (in Russian) | MR
[10] A. G. Baskakov, “Method of abstract harmonic analisis in theory of linear operators”, Sib. Math. J., 24:1 (1983), 17–32 | DOI | MR
[11] A. G. Baskakov, “A theorem on decomposition of an operator, and some related questions in the analytic theory of perturbations”, Izv. Math., 28:3 (1987), 421–444 | DOI | Zbl
[12] A. G. Baskakov, “Splitting of perturbation differential operators with unbounded operator coefficients”, Fundam. Prikl. Mat., 8:1 (2002), 1–16 (in Russian)
[13] A. G. Baskakov, “Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations”, Mat. Sb., 206:8 (2015), 1049–1086 | DOI | DOI | MR | Zbl
[14] A. G. Baskakov, A. V. Derbushev, A. O. Shcherbakov, “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Math., 75:3 (2011), 445–469 | DOI | DOI | MR | Zbl
[15] N. B. Uskova, “On a result of R. Turner”, Math. Notes, 76:6 (2004), 844–854 | DOI | DOI | MR | Zbl
[16] N. B. Uskova, “On estimates for spectral projections of perturbed selfadjoint operators”, Sib. Math. J., 41:3 (2000), 591–600 | DOI | MR | Zbl
[17] D. M. Polyakov, “Spectral analysis of a fourth-order nonselfadjoint operator with nonsmooth coefficients”, Sib. Math. J., 56:1 (2015), 138–154 | DOI | MR | Zbl
[18] N. B. Uskova, “On spectral properties of Sturm–Liouville operator with matrix potential”, Ufa Math. J., 7:3 (2015), 84–94 | DOI | MR | Zbl
[19] N. B. Uskova, “On the spectral properties of a second-order differential operator with a matrix potential”, Differ. Equ., 52:5 (2016), 557–567 | DOI | MR | Zbl
[20] A. G. Baskakov, “Estimates for the elements of inverse matrices, and the spectral analysis of linear operators”, Izv. Math., 61:6 (1997), 1113–1135 | DOI | DOI | MR | Zbl
[21] Yu. L. Daletsky, M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Nauka, M., 1970 (in Russian) | MR
[22] N. B. Uskova, “On the spectrum of some classes of differential operators”, Differ. Equ., 30:2 (1994), 328–330 | MR | Zbl
[23] G. V. Garkavenko, “On diagonalization of certain classes of linear operators”, Izv. Vyssh. Uchebn. Zaved., Mat., 1994, no. 11, 14–19 (in Russian)
[24] N. B. Uskova, “On the method of similar operators in Banach algebras”, Izv. Vyssh. Uchebn. Zaved., Mat., 2005, no. 3, 79–85 (in Russian)
[25] N. B. Uskova, “Estimates for spectral expansions of eigenvectors for some classes of perturbed differential operators”, Differ. Equ., 33:4 (1997), 571–574 | MR | Zbl
[26] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Nauka, M., 1997 (in Russian)
[27] W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., 1973 | MR | Zbl