On cycles in models of functioning of circular gene networks
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 1, pp. 54-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a phase portrait of a nonlinear 10-dimensional dynamical system describing a model of functioning of one circular gene network. We find sufficient conditions for the existence of a cycle in this phase portrait. For a similar 18-dimensional dynamical system, we find conditions for the existence of at least two cycles in its phase portrait.
Keywords: nonlinear dynamical systems, circular gene network, torus principle.
Mots-clés : phase portraits, cycles
@article{VNGU_2018_18_1_a4,
     author = {V. P. Golubyatnikov and N. E. Kirillova},
     title = {On cycles in models of functioning of circular gene networks},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {54--63},
     year = {2018},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a4/}
}
TY  - JOUR
AU  - V. P. Golubyatnikov
AU  - N. E. Kirillova
TI  - On cycles in models of functioning of circular gene networks
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2018
SP  - 54
EP  - 63
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a4/
LA  - ru
ID  - VNGU_2018_18_1_a4
ER  - 
%0 Journal Article
%A V. P. Golubyatnikov
%A N. E. Kirillova
%T On cycles in models of functioning of circular gene networks
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2018
%P 54-63
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a4/
%G ru
%F VNGU_2018_18_1_a4
V. P. Golubyatnikov; N. E. Kirillova. On cycles in models of functioning of circular gene networks. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 1, pp. 54-63. http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a4/

[1] N. Ayupova, V. Golubyatnikov, M. Kazantsev, “On existence of cycle in one asymmetric model of molecular repressilator”, Numerical Analysis and Applications, 10:2 (2017), 101–107 | DOI | MR | Zbl

[2] S. Glyzin, A. Kolesov, N. Rozov, “Buffering in cyclic gene networks”, Theoret. and Math. Phys., 187:3 (2016), 935–951 | DOI | DOI | MR | Zbl

[3] S. Glyzin, A. Kolesov, N. Rozov, “Existence and stability of the relaxation cycle in a mathematical repressilator model”, Mat. Zametki, 101:1 (2017), 58–67 (in Russian) | DOI

[4] Elowitz M. B., Leibler S., “A Synthetic Oscillatory Network of Transcriptional Regulators”, Nature, 403 (2000), 335–338 | DOI

[5] El Samad H., Del Vecchio D., Khammash M., “Repressilators and Promotilators: Loop dynamics in Gene Regulatory Networks”, Proc. American Control Conference, 2005, 4405–4410

[6] S. Glyzin, A. Kolesov, N. Rozov, “The buffer phenomenon in ring-like chains of unidirectionally connected generators”, Izv. Akad. Nauk. Ser. Mat., 78:4 (2014), 73–108 (in Russian) | DOI | Zbl

[7] N. Ayupova, V. Golubyatnikov, “A three-cells model of the initial stage of development of a proneural cluster”, J. Appl. Ind. Math., 11:2 (2017), 1–7 | DOI | MR

[8] Yu. Gaidov, V. Golubyatnikov, “On some nonlinear dynamical systems modeling asymmetric gene networks”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:2 (2007), 8–17 (in Russian)

[9] Glass L., Pasternack J. S., “Stable Oscillations in Mathematical Models of Biological Control Systems”, J. of Math. Biology, 6 (1978), 207–223 | DOI | MR | Zbl

[10] Hastings S., Tyson J. J., Webster D., “Existence of Periodic Solutions for Negative Feedbacks Cellular Control Systems”, J. Diff. Equations, 25 (1977), 39–64 | DOI | MR | Zbl

[11] M. Kazantsev, “On some properties of domain graphs of dynamical systems”, Sib. Zh. Ind. Mat., 18:4 (2015), 42–49 (in Russian)

[12] A. Akinshin, V. Golubyatnikov, “On cycles in symmetric dynamical systems”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:2 (2012), 3–12 (in Russian)

[13] D. Grobman, “Topological classification of neighborhoods of a singularity in $n$-space”, Mat. Sb. (N.S.), 56:1 (1962), 77–94 (in Russian) | Zbl

[14] I. Petrovskii, Lectures on the Theory of Ordinary Differential Equations, Moscow state university, M., 1984 (in Russian)

[15] Golubyatnikov V., Likhoshvai V., Ratushnyi A., “Existence of closed trajectories in 3D gene networks”, The J. of Three-Dimensional Images, 18:4 (2004), 96–101

[16] S. Fadeev, N. Leskova, I. Akberdin, “An investigations of the model of functional state of mouse embryonic stem cells based on the method of solution continuation with respect to a parameter”, Vych. Technolog., 22:1 (2017), 67–83 (in Russian) | Zbl

[17] A. Akinshin, , 2017 https://gist.github.com/AndreyAkinshin/7e4561381440261f98704c7afbd0812

[18] A. Akinshin, T. Bukharina, V. Golubyatnikov, D. Furman, “Mathematical modeling of interaction of two cells in proneural cluster of the wing imaginal disk of D.melanogaster”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:4 (2014), 3–10 (in Russian)

[19] Glass L., Wilds R., “Contrasting Methods for Symbolic Analysis of Biological Regulatory Networks”, Physical Review, E 80 (2009), 062902-1–062902-4 | DOI

[20] Likhoshvai V. A., Fadeev S. I., Kogai V. V., Khlebodarova T. M., “Alternative Splicing Can Lead to Chaos”, J. of Bioinformatics and Computational Biology, 13:1 (2015), 1540003-1–1540003-25 | DOI