Unblocked imputations of fuzzy games I. Existence
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 1, pp. 35-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, a generalization of the famous Scarf theorem on the core of NTU cooperative game is established. The generalization considered deals with an extension of classic blocking via ordinary coalitions to the blocking via the so-called fuzzy coalitions. A well-known concept of a balanced family of standard coalitions is extended to the case of an arbitrary set of fuzzy coalitions, thus making it possible to introduce a natural analog of a balanced game for the characteristic function with arbitrary efficiency domain. Applying an appropriate approximation of a fuzzy game by finitely-generated games, together with the seminal combinatorial Scarf lemma, we obtain a rather general existence theorem for unblocked imputations of an $F$-balanced NTU fuzzy cooperative game.
Keywords: NTU fuzzy cooperative game, $F$-balancedness of a fuzzy game, unblocked imputation, the core of a fuzzy game.
@article{VNGU_2018_18_1_a3,
     author = {V. A. Vasil'ev},
     title = {Unblocked imputations of fuzzy {games~I.} {Existence}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {35--53},
     year = {2018},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a3/}
}
TY  - JOUR
AU  - V. A. Vasil'ev
TI  - Unblocked imputations of fuzzy games I. Existence
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2018
SP  - 35
EP  - 53
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a3/
LA  - ru
ID  - VNGU_2018_18_1_a3
ER  - 
%0 Journal Article
%A V. A. Vasil'ev
%T Unblocked imputations of fuzzy games I. Existence
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2018
%P 35-53
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a3/
%G ru
%F VNGU_2018_18_1_a3
V. A. Vasil'ev. Unblocked imputations of fuzzy games I. Existence. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 1, pp. 35-53. http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a3/

[1] V. A. Vasil'ev, An Extension of Scarf Theorem on the Core of an $n$ Person Game, Preprint, No 283, IM SO RAN USSR, Novosibirsk, 2012 (in Russian)

[2] Scarf H., “The Core of an $n$ Person Game”, Econometrica, 35:1 (1967), 50–69 | DOI | MR | Zbl

[3] Ch. D. Aliprantis, D. J. Brown, O. Burkinshaw, Existence and Optimality of Competitive Equilibria, Springer-Verlag, Berlin–Heidelberg–New York-Tokyo, 1995 | MR

[4] Vasil'ev V. A., “A Fuzzy-core Extension of Scarf Theorem and Related Topics”, Collected papers presented on the Eighth International Conference Game Theory and Management, Contributions to Game Theory and Management, 8, eds. Leon A. Petrosyan, Nikolay A. Zenkevich, Saint Petersburg State Univ., Spb., 2015, 300–314 | MR

[5] Bondareva O. N., “"Core theory for $n$-player game"”, Vestnik Leningrad. Univ., 13:3 (1962), 141–142 (in Russian) | Zbl

[6] J. Rosenmüller, The Theory of Games and Markets, North-Holland, Amsterdam, 1974

[7] T. Hansen, G. Scarf, On the Applications of a Recent Combinatorial Algorithm, Cowles Foundation Discussion Paper, 272, 1969

[8] J. von Neumann, O. Morgenstern, Theory of Games and Economic Behavior, Princeton Univ. Press, Princeton, NJ, 1953 | MR | Zbl

[9] I. Ekeland, Éléments d'Économie Mathématique, Hermann, Paris, 1979 | MR

[10] Vasil'ev V. A., “On Edgeworth Equilibria for Some Types of Non-Classic Markets”, Siberian Adv. in Math., 6:3 (1996), 96–150 | MR

[11] V. A. Vasil'ev, Mathematical Models of General Economic Equilibrium, Novosibirsk State Univ. Press, Novosibirsk, 2009 (in Russian)

[12] V. A. Vasil'ev, V. I. Suslov, “On Edgeworth equilibrium in a model of interregional economic relationships”, Sib. Zh. Ind. Mat., 13:1(41) (2010), 18–33 (in Russian)

[13] Aubin J.-P., Optima and Equilibria, Springer-Verlag, Berlin–Heidelberg, 1993 | MR | Zbl

[14] S. L. Pechersky, E. B. Yanovskaya, Cooperative Games: Solutions and Axioms, SPb-European Univ. Press, Saint Petersburg, 2004 (in Russian)

[15] Billera L., “Some Theorems on the Core of an $n$-Person Game without Side Payments”, SIAM J. Appl. Math., 18:3 (1970), 567–579 | DOI | MR | Zbl