On $\Sigma$-definability of hereditarily finite and list superstructures
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 1, pp. 3-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is concerned with properties of hereditarily finite superstructures $\mathbb{HF}(\mathfrak{M})$ and hereditarily finite list superstructures $\mathbb{HW}(\mathfrak{M})$. The main result states that any relation $\Sigma$-definable in a hereditarily finite superstructure $\mathbb{HF}(\mathfrak{M})$ can also be defined by $\Sigma$-formula in a hereditarily finite list superstructure $\mathbb{HW}(\mathfrak{M})$ and vice versa.
Keywords: computability, $\Sigma$-definability, hereditarily finite superstructure, hereditarily finite list superstructure.
Mots-clés : $\Sigma$-definable structure
@article{VNGU_2018_18_1_a0,
     author = {S. A. Aleksandrova},
     title = {On $\Sigma$-definability of hereditarily finite and list superstructures},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--10},
     year = {2018},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a0/}
}
TY  - JOUR
AU  - S. A. Aleksandrova
TI  - On $\Sigma$-definability of hereditarily finite and list superstructures
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2018
SP  - 3
EP  - 10
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a0/
LA  - ru
ID  - VNGU_2018_18_1_a0
ER  - 
%0 Journal Article
%A S. A. Aleksandrova
%T On $\Sigma$-definability of hereditarily finite and list superstructures
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2018
%P 3-10
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a0/
%G ru
%F VNGU_2018_18_1_a0
S. A. Aleksandrova. On $\Sigma$-definability of hereditarily finite and list superstructures. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a0/

[1] Yu. L. Ershov, Definability and Computability, Sib. School Alg. Log., Nauch. Kniga, Novosibirsk, 1996 (in Russian) | MR

[2] Stukachev A. I., Ershov Yu. L., Puzarenko V. G., “$\mathbb{HF}(\mathbb{R})$-Computability”, Computability in Context, Computation and Logic in the Real World, eds. S. Barry Cooper, Andrea Sorbi, World Scientific; Imperial College Press, London, 2011, 169–242 | MR | Zbl

[3] A. S. Morozov, “Nonpresentability of the semigroup $\omega^{\omega}$ over $H\!F(R)$”, Sib. Math. J., 55:1 (2014), 125–131 | DOI | MR | Zbl

[4] A. S. Morozov, “$\Sigma$-presentations of the ordering on the reals”, Algebra and Logic, 53:3 (2014), 217–237 | DOI | MR | Zbl

[5] A. S. Morozov, “$\Sigma$-rigid presentations of the real order”, Sib. Math. J., 55:3 (2014), 457–464 | DOI | MR | Zbl

[6] A. S. Morozov, “Some presentations of the real number field”, Algebra and Logic, 51:1 (2012), 66–88 | DOI | MR | Zbl

[7] A. S. Morozov, M. V. Korovina, “$\Sigma$-definability of countable structures over real numbers, complex numbers, and quaternions”, Algebra and Logic, 47:3 (2008), 193–209 | DOI | MR | Zbl

[8] S. S. Goncharov, D. I. Sviridenko, “$\Sigma$-programming”, Am. Math. Soc. Trans. Ser. 2, 142 (1989), 101–121 | Zbl