On $\Sigma$-definability of hereditarily finite and list superstructures
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 1, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is concerned with properties of hereditarily finite superstructures $\mathbb{HF}(\mathfrak{M})$ and hereditarily finite list superstructures $\mathbb{HW}(\mathfrak{M})$. The main result states that any relation $\Sigma$-definable in a hereditarily finite superstructure $\mathbb{HF}(\mathfrak{M})$ can also be defined by $\Sigma$-formula in a hereditarily finite list superstructure $\mathbb{HW}(\mathfrak{M})$ and vice versa.
Keywords: computability, $\Sigma$-definability, hereditarily finite superstructure, hereditarily finite list superstructure.
Mots-clés : $\Sigma$-definable structure
@article{VNGU_2018_18_1_a0,
     author = {S. A. Aleksandrova},
     title = {On $\Sigma$-definability of hereditarily finite and list superstructures},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a0/}
}
TY  - JOUR
AU  - S. A. Aleksandrova
TI  - On $\Sigma$-definability of hereditarily finite and list superstructures
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2018
SP  - 3
EP  - 10
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a0/
LA  - ru
ID  - VNGU_2018_18_1_a0
ER  - 
%0 Journal Article
%A S. A. Aleksandrova
%T On $\Sigma$-definability of hereditarily finite and list superstructures
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2018
%P 3-10
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a0/
%G ru
%F VNGU_2018_18_1_a0
S. A. Aleksandrova. On $\Sigma$-definability of hereditarily finite and list superstructures. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 18 (2018) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/VNGU_2018_18_1_a0/