On contact of thin obstacle and plate, containing thin inclusion
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 94-111
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider problems describing a contact between an elastic plate and a thin elastic obstacle. The plate has a thin elastic inclusion. Under study is equilibrium problems for the plate both with the presence or absence of a cut. Different equivalent formulations of these problems are proposed, and existence of solutions is proved. We investigate a convergence to infinity of a rigidity parameter of the elastic inclusion. Formulations of the limit problem are analyzed.
Keywords:
plate, thin obstacle, thin inclusion, rigid inclusion, beam, bend, delamination, variational inequality, minimization problem, contact problem, crack.
@article{VNGU_2017_17_4_a8,
author = {A. I. Furtsev},
title = {On contact of thin obstacle and plate, containing thin inclusion},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {94--111},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a8/}
}
A. I. Furtsev. On contact of thin obstacle and plate, containing thin inclusion. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 94-111. http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a8/