On contact of thin obstacle and plate, containing thin inclusion
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 94-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider problems describing a contact between an elastic plate and a thin elastic obstacle. The plate has a thin elastic inclusion. Under study is equilibrium problems for the plate both with the presence or absence of a cut. Different equivalent formulations of these problems are proposed, and existence of solutions is proved. We investigate a convergence to infinity of a rigidity parameter of the elastic inclusion. Formulations of the limit problem are analyzed.
Keywords: plate, thin obstacle, thin inclusion, rigid inclusion, beam, bend, delamination, variational inequality, minimization problem, contact problem, crack.
@article{VNGU_2017_17_4_a8,
     author = {A. I. Furtsev},
     title = {On contact of thin obstacle and plate, containing thin inclusion},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {94--111},
     year = {2017},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a8/}
}
TY  - JOUR
AU  - A. I. Furtsev
TI  - On contact of thin obstacle and plate, containing thin inclusion
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 94
EP  - 111
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a8/
LA  - ru
ID  - VNGU_2017_17_4_a8
ER  - 
%0 Journal Article
%A A. I. Furtsev
%T On contact of thin obstacle and plate, containing thin inclusion
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 94-111
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a8/
%G ru
%F VNGU_2017_17_4_a8
A. I. Furtsev. On contact of thin obstacle and plate, containing thin inclusion. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 94-111. http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a8/

[1] Grisvard P., Elliptic Problems in Nonsmooth Domains, Pitman, Boston–London–Melbourne, 1985 | MR | Zbl

[2] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[3] A. M. Khludnev, Elasticity Problems In Nonsmooth Domains, Fizmatlit, M., 2010 (in Russian)

[4] Kovtunenko V. A., Leont'ev A. N., Khludnev A. M., “Equilibrium Problem of a Plate with an Oblique Cut”, J. Appl. Mech. Tech. Phys., 39:2 (1998), 302–311 | DOI | MR | Zbl

[5] Neustroeva N. V., “A Rigid Inclusion in the Contact Problem for Elastic Plates”, J. Appl. Indust. Math., 4:4 (2010), 526–538 | DOI | MR

[6] Lazarev N. P., “Equilibrium Problem for a Timoshenko Plate with an Oblique Crack”, J. Appl. Mech. Tech. Phys., 54:4 (2013), 662–667 | DOI | MR

[7] Lazarev N. P., “Fictitious Domain Method in the Equilibrium Problem for a Timoshenko Type Plate Contacting with a Rigid Obstacle”, J. Math. Sci., 203:4 (2014), 527–539 | DOI | MR

[8] Fankina I. V., “A Contact Problem for an Elastic Plate with a Thin Rigid Inclusion”, J. Appl. Indust. Math., 10:3 (2016), 333–340 | DOI | MR | Zbl

[9] T. A. Stekina, “The variational problem of the unilateral contact between an elastic plate and a beam”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:1 (2009), 45–56 (in Russian) | Zbl

[10] Khludnev A. M., “On Bending an Elastic Plate with a Delaminated Thin Rigid Inclusion”, J. Appl. Indust. Math., 5:4 (2011), 582–594 | DOI | MR | Zbl

[11] A. M. Khludnev, T. S. Popova, “On the hierarchy of thin inclusions in elastic bodies”, Mat. Zametki SVFU, 23:1 (2016), 87–107 (in Russian) | Zbl

[12] Rudoy E. M., “Invariant Integrals for the Equilibrium Problem for a Plate with a Crack”, Sib. Math. J., 45:2 (2004), 388–397 | DOI | MR | Zbl

[13] Rudoy E. M., “The Griffith Formula and Cherepanov–Rice Integral for a Plate with a Rigid Inclusion and a Crack”, J. Math. Sci., 186:3 (2012), 511–529 | DOI | MR

[14] Khludnev A. M., Negri M., “Optimal Rigid Inclusion Shapes in Elastic Bodies with Cracks”, J. Appl. Math. Phys., 64:1 (2013), 179–191 | MR | Zbl

[15] Shcherbakov V. V., “Existence of an Optimal Shape of the Thin Rigid Inclusions in the Kirchhoff–Love Plate”, J. Appl. Indust. Math., 8:1 (2014), 97–105 | DOI | MR

[16] Shcherbakov V. V., “Choosing an Optimal Shape of Thin Rigid Inclusions in Elastic Bodies”, J. Appl. Mech. Tech. Phys., 56:2 (2015), 321–329 | DOI | MR | Zbl

[17] Khludnev A. M., “Thin Inclusions in Elastic Bodies Crossing an External Boundary”, J. Appl. Math. Mech., 95:11 (2015), 1256–1267 | MR | Zbl

[18] Lazarev N. P., “Optimal Control of the Thickness of a Rigid Inclusion in Equilibrium Problems for Inhomogeneous Two-Dimensional Bodies with a Crack”, J. Appl. Math. Mech., 96:4 (2016), 509–518 | MR

[19] Pyatkina E. V., “Optimal Control of the Layer Size in the Problem of Equilibrium of Elastic Bodies with Overlapping Domains”, J. Appl. Indust. Math., 10:3 (2016), 435–443 | DOI | MR | Zbl

[20] Hintermueller M., Kovtunenko V. A., “From Shape Variation to Topology Changes in Constrained Minimization: A Velocity Method Based Concept”, Optim. Methods Softw., 26:4–5 (2011), 513–532 | DOI | MR | Zbl

[21] Khludnev A. M., Kovtunenko V. A., Tani A., “On the Topological Derivative due to Kink of a Crack with Non-Penetration. Anti-Plane Model”, J. Math. Pures Appl., 94:6 (2010), 571–596 | DOI | MR | Zbl

[22] Kovtunenko V. A., Leugering G., “A Shape-Topological Control Problem for Nonlinear Crack–Defect Interaction: The Anti-Plane Variational Model”, SIAM J. Control Optim., 54:3 (2016), 1329–1351 | DOI | MR | Zbl

[23] E. I. Grigolyuk, V. M. Tolkachev, Contact Problems of the Theory of Plates and Shells, Mashinostroenie, M., 1980 (in Russian)

[24] Caffarelli L. A., Friedman A., “The Obstacle Problem for the Biharmonic Operator”, Ann. Scuola Norm. Sup. Pisa, 6:1 (1979), 151–184 | MR | Zbl

[25] Dal Maso G., Paderni G., “Variational Inequalities for the Biharmonic Operator with Variable Obstacles”, Ann. Mat. Pura Appl., 153:1 (1988), 203–227 | DOI | MR | Zbl

[26] Bessoud A. L., Krasucki F., Serpilli M., “Plate–Like and Shell–Like Inclusions with High Rigidity”, Comptes Rendus Mathematique, 346:11 (2008), 697–702 | DOI | MR | Zbl

[27] Gaudiello A., Zappale E., “A Model of Joined Beams as Limit of a 2D Plate”, J. of Elasticity, 103:2 (2011), 205–233 | DOI | MR | Zbl

[28] Timoshenko S., Woinowsky-Krieger S., Theory of Plates and Shells, McGraw-hill, N. Y.–Toronto–L., 1959

[29] A. S. Vol'mir, Nonlinear Dynamics of Plates and Shells, Nauka, M., 1972 (in Russian)

[30] Y. N. Rabotnov, Mechanics of a Deformed Solid Body, Nauka, M., 1988 (in Russian)

[31] Lions J. L., Magenes E., Problemes aux Limites non Homogenes et Applications, Dunod, Paris, 1968 | MR | Zbl

[32] Lions J. L., Quelques Methodes de Resolution des Problemes aux Limites non Lineaires, Dunod, Paris, 1969 | MR | Zbl

[33] Fichera G., Boundary Value Problems of Elasticity with Unilateral Constraints, Springer-Verlag, Berlin–Heidelberg, 1972

[34] Baiocchi C., Capelo A., Variational and Quasivariational Inequalities: Applications to free Boundary Problems, Wiley, Chichester, 1984 | MR | Zbl

[35] Hlavacek I., Haslinger J., Necas J., Lovisek J., Solution of Variational Inequalities in Mechanics, Springer-Verlag, N. Y., 1988 | MR | Zbl