A theory of spatial equilibrium: the existence of migration proof country partition in a uni-dimensional world
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 64-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of an immigration proof country partition is studied in a one-dimensional world of interval $[0,1]$. The allocation of population is described by the Radon measure which does not necessarily have density. We prove that the world can be divided into “countries” presented as generalized intervals. In particular, a “country” of zero size (length), but nonzero mass (of population) can appear. This is a specific spatial Tiebout equilibrium, in which the principle of migration consistency suggests that the inhabitants of frontier have no incentives to change jurisdiction, i.e. an inhabitant at every frontier point has equal costs for all permissible jurisdictions. The paper generalizes various results of 90s–2000s.
Keywords: countries formation, Alesina and Spolaore's world
Mots-clés : migration, stable partition.
@article{VNGU_2017_17_4_a6,
     author = {V. M. Marakulin},
     title = {A theory of spatial equilibrium: the existence of migration proof country partition in a uni-dimensional world},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {64--78},
     year = {2017},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a6/}
}
TY  - JOUR
AU  - V. M. Marakulin
TI  - A theory of spatial equilibrium: the existence of migration proof country partition in a uni-dimensional world
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 64
EP  - 78
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a6/
LA  - ru
ID  - VNGU_2017_17_4_a6
ER  - 
%0 Journal Article
%A V. M. Marakulin
%T A theory of spatial equilibrium: the existence of migration proof country partition in a uni-dimensional world
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 64-78
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a6/
%G ru
%F VNGU_2017_17_4_a6
V. M. Marakulin. A theory of spatial equilibrium: the existence of migration proof country partition in a uni-dimensional world. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 64-78. http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a6/

[1] Alesina A., Spolaore E., “On the Number and Size of Nations”, Quart. J. of Economics, 113 (1997), 1027–1056 | DOI

[2] Tiebout C. M., “A Pure Theory of Local Expenditures”, The Journal of Political Economy, 64 (1956), 416–424 | DOI

[3] Le Breton M., Musatov M., Savvateev A., Weber S., “Rethinking Alesina and Spolaore's “Uni-Dimensional World”: Existence of Migration Proof Country Structures for Arbitrary Distributed Populations”, Proc. of XI Int. Academic Conf. on Economic and Social Development (Moscow, 6–8 April 2010, University — Higher School of Economics)

[4] V. M. Marakulin, On Existence of Migration Proof Country Structures, Preprint No 292, IM SO AN USSR, Novosibirsk, 2014 (in Russian)

[5] Marakulin V. M., “On the Existence of Immigration Proof Partition into Countries in Multidimensional Space”, DOOR-2016, Lecture Notes in Computer Sciences, 9869, eds. Yu. Kochetov et al., Springer, Heidelberg, 2016, 494–508 | DOI | MR | Zbl

[6] Savvateev A., Sorokin C., Weber S., Multidimensional Free–Mobility Equilibrium: Tiebout Revisited, mimeo, 2016