A theory of spatial equilibrium: the existence of migration proof country partition in a uni-dimensional world
    
    
  
  
  
      
      
      
        
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 64-78
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The existence of an immigration proof country partition is studied in a one-dimensional world of interval $[0,1]$. The allocation of population is described by the Radon measure which does not necessarily have density. We prove that the world can be divided into “countries” presented as generalized intervals. In particular, a “country” of zero size (length), but nonzero mass (of population) can appear. This is a specific spatial Tiebout equilibrium, in which the principle of migration consistency suggests that the inhabitants of frontier have no incentives to change jurisdiction, i.e. an inhabitant at every frontier point has equal costs for all permissible jurisdictions. The paper generalizes various results of 90s–2000s.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
countries formation, Alesina and Spolaore's world
Mots-clés : migration, stable partition.
                    
                  
                
                
                Mots-clés : migration, stable partition.
@article{VNGU_2017_17_4_a6,
     author = {V. M. Marakulin},
     title = {A theory of spatial equilibrium: the existence of migration proof country partition in a uni-dimensional world},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {64--78},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a6/}
}
                      
                      
                    TY - JOUR AU - V. M. Marakulin TI - A theory of spatial equilibrium: the existence of migration proof country partition in a uni-dimensional world JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2017 SP - 64 EP - 78 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a6/ LA - ru ID - VNGU_2017_17_4_a6 ER -
%0 Journal Article %A V. M. Marakulin %T A theory of spatial equilibrium: the existence of migration proof country partition in a uni-dimensional world %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2017 %P 64-78 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a6/ %G ru %F VNGU_2017_17_4_a6
V. M. Marakulin. A theory of spatial equilibrium: the existence of migration proof country partition in a uni-dimensional world. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 64-78. http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a6/
