Formalization of inverse problems and its applications
    
    
  
  
  
      
      
      
        
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 49-56
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We show how binary correspondences can be used for simple formalization of the notion of problem, definition of the basic components of problems, their properties, and constructions (the condition of a problem, its data and unknowns, solvability and unique solvability of a problem, inverse problem, composition and restriction of problems, etc.). We also consider topological problems and the related notions of stability and correctness. Particular attention is paid to problems with parameters. As an illustration, we consider a system of differential equations which describe a process in chemical kinetics, as well as the inverse problem.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
inverse problem, binary correspondence, solvability, stability, correctness, differential equation, chemical kinetics.
Mots-clés : composition
                    
                  
                
                
                Mots-clés : composition
@article{VNGU_2017_17_4_a4,
     author = {A. E. Gutman and L. I. Kononenko},
     title = {Formalization of inverse problems and its applications},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {49--56},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a4/}
}
                      
                      
                    TY - JOUR AU - A. E. Gutman AU - L. I. Kononenko TI - Formalization of inverse problems and its applications JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2017 SP - 49 EP - 56 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a4/ LA - ru ID - VNGU_2017_17_4_a4 ER -
A. E. Gutman; L. I. Kononenko. Formalization of inverse problems and its applications. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 49-56. http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a4/
