Formalization of inverse problems and its applications
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 49-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show how binary correspondences can be used for simple formalization of the notion of problem, definition of the basic components of problems, their properties, and constructions (the condition of a problem, its data and unknowns, solvability and unique solvability of a problem, inverse problem, composition and restriction of problems, etc.). We also consider topological problems and the related notions of stability and correctness. Particular attention is paid to problems with parameters. As an illustration, we consider a system of differential equations which describe a process in chemical kinetics, as well as the inverse problem.
Keywords: inverse problem, binary correspondence, solvability, stability, correctness, differential equation, chemical kinetics.
Mots-clés : composition
@article{VNGU_2017_17_4_a4,
     author = {A. E. Gutman and L. I. Kononenko},
     title = {Formalization of inverse problems and its applications},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {49--56},
     year = {2017},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a4/}
}
TY  - JOUR
AU  - A. E. Gutman
AU  - L. I. Kononenko
TI  - Formalization of inverse problems and its applications
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 49
EP  - 56
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a4/
LA  - ru
ID  - VNGU_2017_17_4_a4
ER  - 
%0 Journal Article
%A A. E. Gutman
%A L. I. Kononenko
%T Formalization of inverse problems and its applications
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 49-56
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a4/
%G ru
%F VNGU_2017_17_4_a4
A. E. Gutman; L. I. Kononenko. Formalization of inverse problems and its applications. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 49-56. http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a4/

[1] A. E. Gutman, A. V. Koptev, “Finite dimensionality and separability of the stalks of Banach bundles”, Sib. Math. J., 55:2 (2014), 246–253 | DOI | MR | Zbl

[2] L. I. Kononenko, “Qualitative analysis of singularly perturbed systems with one or two slow and fast variables”, Sib. Zh. Ind. Mat., 5:4 (2002), 55–62 (in Russian) | Zbl

[3] L. I. Kononenko, “Relaxations in singularly perturbed planar systems”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:4 (2009), 45–50 (in Russian) | Zbl

[4] V. M. Goldstein, V. A. Sobolev, Qualitative Analysis of Singularly Perturbed Systems, Sobolev Institute of Mathematics, Novosibirsk, 1988 (in Russian)

[5] Yu. A. Mitropolsky, O. B. Lykova, Integral Manifolds in Nonlinear Mechanics, Nauka, M., 1963 (in Russian)

[6] A. V. Vasil'eva, V. F. Butuzov, Singularly Perturbed Equations in Critical Cases, Nauka, M., 1978 (in Russian)

[7] A. N. Tikhonov, “On independence of solutions to differential equations on a small parameter”, Mat. Sb., 22(64):2 (1948), 193–204 (in Russian) | Zbl

[8] L. I. Kononenko, “Identification problem for singular systems with small parameter in chemical kinetics”, Sib. Elektron. Mat. Izv., 13 (2016), 175–180 (in Russian) | Zbl