Exploring noisy contexts with probabilistic formal concepts
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 28-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a qualitatively new approach to the problem of recognizing formal concepts in noisy contexts. A logical probablistic generalization of formal concepts is introduced to handle noise. We show how to solve the inductive inference ambiguity problem.
Keywords: formal concept analysis, concept lattice, inductive learning, probability, data mining
Mots-clés : association rules, classification, noise.
@article{VNGU_2017_17_4_a2,
     author = {E. E. Vityaev and V. V. Martinovich},
     title = {Exploring noisy contexts with probabilistic formal concepts},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {28--38},
     year = {2017},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a2/}
}
TY  - JOUR
AU  - E. E. Vityaev
AU  - V. V. Martinovich
TI  - Exploring noisy contexts with probabilistic formal concepts
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 28
EP  - 38
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a2/
LA  - ru
ID  - VNGU_2017_17_4_a2
ER  - 
%0 Journal Article
%A E. E. Vityaev
%A V. V. Martinovich
%T Exploring noisy contexts with probabilistic formal concepts
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 28-38
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a2/
%G ru
%F VNGU_2017_17_4_a2
E. E. Vityaev; V. V. Martinovich. Exploring noisy contexts with probabilistic formal concepts. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 28-38. http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a2/

[1] Klimushkin M., Obiedkov S., Roth C., “Approaches to the Selection of Relevant Concepts in the Case of Noisy Data”, ICFCA 2010, LNAI, 5986, 2010, 255–266 | Zbl

[2] Bayardo Jr. R., Goethals B., Zaki M. (eds.), Proc. of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, CEUR-WS.org, 2004

[3] E. E. Vityaev, A. V. Demin, D. K. Ponomaryov, “Probabilistic generalization of formal concepts”, Programming and Computer Software, 38:5 (2012), 219–230 | DOI | MR | Zbl

[4] Kuznetsov S. O., “On Stability of a Formal Concept”, Annals of Mathematics and Artificial Intelligence, 49 (2007), 101–115 | DOI | MR | Zbl

[5] Kuznetsov S. O., “Concept Stability as a Tool for Pattern Selection”, ECAI, CEUR Workshop proceedings, 1257, 2014, 51–58

[6] Prokasheva O., Onishchenko A., Gurov S., “Classification Based on Formal Concept Analysis and Biclustering: Possibilities of the Approach”, Computational Mathematics And Modeling, 23:3 (2014), 329–336 | MR

[7] Emilion R., Levy G., “Size of Random Galois Lattices”, Discrete Applied Math., 157 (2009), 2945–2957 | DOI | MR | Zbl

[8] Rosch E., Lloyd B. B., “Principles of Categorization”, Cognition and Categorization, Lawrence Elbaum Associates, 1978

[9] Rehder B., “Categorization as Causal Reasoning”, Cognitive Sci., 27:5 (2003), 709–748 | DOI

[10] Quan T. T., Hui S. C., Cao T. H., “A Fuzzy FCA-Based Approach to Conceptual Clustering for Automatic Generation of Concept Hierarchy on Uncertainty Data”, CLA 2004, CEUR Workshop proceedings, 110, eds. Belohlavek R., Snasel V., 2004, 507–522

[11] Ganter B., Formal Concept Analysis: Methods, and Applications in Computer Science, TU Dresden, 2003 | MR

[12] Ganter B., Wille R., Formal Concept Analysis — Mathematical Foundations, Springer, Berlin–Heidelberg–N. Y., 1999 | MR | Zbl

[13] Ganter B., Obiedkov S., Implications in Triadic Formal Contexts, Springer, TU Dresden, 2004 | MR | Zbl

[14] Hempel C., “Inductive Inconsistencies”, Synthese, 12 (1960), 439–469 | DOI | MR | Zbl

[15] Vityaev E. E., Martynovich V. V., “Probabilistic Formal Concepts with Negation”, Perspectives of System Informatics, LNCS, 8974, eds. A. Voronkov, I. Virbitskaite, 2015, 385–399 | MR | Zbl