Unique determination of three-dimensional convex polyhedral domains by relative conformal moduli of boundary condensers
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 3-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We continue the study of the problem on unique determination of domains in Euclidean spaces by the relative conformal moduli of their boundary condensers. The main result asserts that every convex bounded polyhedral domain in the three-dimensional Euclidean space is uniquely determined by the relative conformal moduli of its boundary condensers. An analogous result was earlier obtained for $n$-dimensional polyhedral domains in the case $n \ge 4$.
Keywords: $p$-modulus of a path family, boundary condenser, conformal mapping, isometry
Mots-clés : unique determination.
@article{VNGU_2017_17_4_a0,
     author = {V. V. Aseev and A. P. Kopylov},
     title = {Unique determination of three-dimensional convex polyhedral domains by relative conformal moduli of boundary condensers},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--17},
     year = {2017},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a0/}
}
TY  - JOUR
AU  - V. V. Aseev
AU  - A. P. Kopylov
TI  - Unique determination of three-dimensional convex polyhedral domains by relative conformal moduli of boundary condensers
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 3
EP  - 17
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a0/
LA  - ru
ID  - VNGU_2017_17_4_a0
ER  - 
%0 Journal Article
%A V. V. Aseev
%A A. P. Kopylov
%T Unique determination of three-dimensional convex polyhedral domains by relative conformal moduli of boundary condensers
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 3-17
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a0/
%G ru
%F VNGU_2017_17_4_a0
V. V. Aseev; A. P. Kopylov. Unique determination of three-dimensional convex polyhedral domains by relative conformal moduli of boundary condensers. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 4, pp. 3-17. http://geodesic.mathdoc.fr/item/VNGU_2017_17_4_a0/

[1] Pogorelov A. V., Extrinsic Geometry of Convex Surfaces, AMS, Providence, 1973 | MR | Zbl

[2] Kopylov A. P., “Unique Determination of Convex Polyhedral Domains by Relative Conformal Moduli of Boundary Condensers”, Dokl. Math., 74:2 (2006), 637–639 | DOI | MR | Zbl

[3] Kopylov A. P., “On Unique Determination of Domains in Euclidean Spaces”, J. Math. Sci., 153:6 (2008), 869–898 | DOI | MR | Zbl

[4] Kopylov A. P., “Unique Determination of Domains”, Differential Geometry and its Applications, DGA 2007, Proc. of the $10^\text{th}$ Int. Conf. on Differential Geometry and Its Applications (Olomouc, Czech Republic, August 27–31, 2007), World Scientific, Hackensack, NJ, 2008, 157–169 | DOI | MR | Zbl

[5] Kopylov A. P., Unique Determination of Polyhedral Domains in $\mathbb R^n$ ($n \ge 4$) and $p$-Moduli of Path Families, 2014, arXiv: 1402.4273v3 [math.MG] | MR

[6] Kopylov A. P., “Uniqueness of Polyhedral Domains and p-Moduli of Path Families”, Dokl. Math., 83:3 (2011), 321–323 | DOI | MR | Zbl

[7] A. P. Kopylov, “Unique determination of polyhedral domains and $p$-moduli of path families”, Modern Problems of Mathematics and Mechanics, 6:3 (2011), 25–41 (in Russian)

[8] Ahlfors L., Beurling A., “Conformal Invariants and Function-Theoretic Null-Sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl

[9] Väisälä J., Lectures on $n$-Dimensional Quasiconformal Mappings, Springer-Verlag, Berlin–Heidelberg–New York, 1973

[10] Gehring F. W., “Rings and Quasiconformal Mappings in Space”, Trans. Amer. Math. Soc., 103 (1962), 353–393 | DOI | MR | Zbl

[11] Reshetnyak Yu. G., Stability Theorems in Geometry and Analysis, Kluwer Academic Publishers, Dordrecht, 1994 | MR | Zbl

[12] Aseev V. V., “Plane Mappings Preserving Moduli”, Sov. Math., Dokl., 41:1 (1990), 141–143 | MR | Zbl

[13] Aseev V. V., “On the Conformal Modulus Distortion under Quasimöbius Mappings”, Ann. Acad. Sci. Fenn. Ser. AIM ath., 16 (1991), 155–168 | MR | Zbl

[14] Aseev V. V., “Quasi-Symmetric Embeddings”, J. Math. Sci. (NY), 108:3 (2002), 375–410 | DOI | MR | Zbl

[15] V. V. Aseev, “Deformation of plates of small condensers and Belinskii's problem”, Sib. Math. J., 42:6 (2001), 1013–1025 | DOI | MR | Zbl

[16] V. V. Aseev, “Correction to the article ‘`Deformation of plates of small condensers and Belinskii’s problem”, Sib. Math. J., 44:1 (2003), 190–193 | DOI | MR | Zbl

[17] Kopylov A. P., “Unique Determination of Convex Polyhedral Domains in Three-Dimensional Euclidean Space by Relative Conformal Moduli of Boundary Condensers”, Dokl. Math., 84 (2011), 3789–790 | MR

[18] V. A. Shlyk, “The equality between $p$-capacity and $p$-modulus”, Sib. Math. J., 34:6 (1993), 1196–1200 | DOI | MR | Zbl

[19] Vuorinen M., Conformal Geometry and Quasiregular Mappings, Lect. Notes Math., 1319, Springer-Verlag, Berlin, 1988 | DOI | MR | Zbl

[20] Reshetnyak Yu. G., Space Mappings with Bounded Distortion, AMS, Providence, 1989 | MR | Zbl

[21] A. D. Aleksandrov, N. Yu. Netsvetaev, Geometry, 2nd Edition, BKhV, Peterburg, 2010 (in Russian)

[22] A. D. Aleksandrov, Selected Works, v. 2, Convex Polyhedra, Nauka, Novosibirsk, 2007 (in Russian)

[23] M. A. Lavrent'ev, B. V. Shabat, Methods for the Theory of Functions of a Complex Variable, Nauka, M., 1987 (in Russian)

[24] Gehring F. W., Väisälä J., “The Coefficients of Quasiconformality of Domains in Space”, Acta Math., 114:1–2 (1965), 1–70 | DOI | MR | Zbl