@article{VNGU_2017_17_3_a8,
author = {I. V. Frankina},
title = {Optimal control of the rigid layer size of the construction},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {86--97},
year = {2017},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a8/}
}
I. V. Frankina. Optimal control of the rigid layer size of the construction. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 3, pp. 86-97. http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a8/
[1] S. A. Nazarov, B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundary, Nauka, M., 1991 (in Russian)
[2] N. F. Morozov, Mathematical Problems of Crack Theory, Nauka, M., 1984 (in Russian)
[3] A. M. Khludnev, Elasticity Problems in Nonsmooth Domains, Fizmatlit, M., 2010 (in Russian)
[4] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton, 2000
[5] A. M. Khludnev, “On an equilibrium problem for a two-layer elastic body with a crack”, J. Appl. Indust. Math., 7:6 (2013), 370–379 | DOI | MR | Zbl
[6] T. S. Popova, “Passage to the limit in the problem on viscoelastic body with rigid inclusion and crack”, Vest. North-Eastern Fed. Univ. n.a. M.K. Ammosov, 11:1 (2014), 19–24 (in Russian)
[7] Khludnev A. M., Leugering G. R., “Optimal Control of Cracks in Elastic Bodies with Thin Rigid Inclusion”, Z. Angew. Math. Mech., 91:2 (2011), 125–137 | DOI | MR | Zbl
[8] N. P. Lazarev, N. V. Neustroeva, N. A. Nikolaeva, “Optimal control of tilt angles in equilibrium problems for the timoshenko plate with a oblique crack”, Sib. Elektron. Mat. Izv., 12 (2015), 300–308 (in Russian) | Zbl
[9] V. V. Shcherbakov, “On an optimal control problem for the shape of thin inclusions in elastic bodies”, J. Appl. Ind. Math., 7:3 (2013), 435–443 | DOI | MR | Zbl
[10] Khludnev A. M., Kovtunenko V. A., Tani A., “On the Topological Derivative due to Kink of a Crack with Non-penetration. Anti-Plane Model”, J. Math. Pures Appl., 94:6 (2010), 571–596 | DOI | MR | Zbl
[11] N. P. Lazarev, “Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack”, Sib. J. Pure and Appl. Math., 16:1 (2016), 90–105 (in Russian) | Zbl
[12] E. V. Pyatkina, “Optimal control of the layer size in the problem of equilibrium of elastic bodies with overlapping domains”, J. Appl. Indust. Math., 10:3 (2016), 435–443 | DOI | MR | Zbl
[13] Kovtunenko V. A., Leugering G., “A Shape-Topological Control Problem for Nonlinear Crack-Defect Interaction: the Anti-Plane Variational Model”, SIAM J. Control Optim., 54:3 (2016), 1329–1351 | DOI | MR | Zbl
[14] V. Z. Parton, E. M. Morozov, Mechanics of Elastic-Plastic Fracture, Nauka, M., 1985 (in Russian)
[15] G. P. Cherepanov, Mechanics of Brittle Fracture, Nauka, M., 1974 (in Russian)
[16] E. M. Rudoy, “Differentiation of energy functionals in two-dimensional elasticity theory for solids with curvilinear cracks”, J. Appl. Mech. Tech. Phys., 45:6 (2004), 843–852 | DOI | MR | Zbl
[17] E. M. Rudoy, “Griffith's formula and Cherepanov–Rice's integral for a plate with a rigid inclusion and a crack”, J. Math. Sci., 186:3 (2012), 511–529 | DOI | MR | Zbl
[18] Kovtunenko V. A., “Nonconvex Problem for Crack with Nonpenetration”, Z. Angew. Math. Mech., 85:4 (2005), 242–251 | DOI | MR | Zbl
[19] E. V. Vtorushin, “Analysis of the Derivative of the Energy Functional with Respect to the Length of a Curvilinear Crack in an Elastic Body with a Possible Crack-edge Contact”, J. Appl. Mech. Tech. Phys., 48:5 (2007), 737–742 | DOI | MR
[20] Gaudiello A., Khludnev A. M., “Crack on the Boundary of Two Overlapping Domains”, Z. Angew. Math. Phys., 61:2 (2010), 341–356 | DOI | MR | Zbl
[21] N. P. Lazarev, “The Griffith Formula for a Timoshenko-type Plate with a Curvilinear Track”, Sib. Zh. Ind. Mat., 16:2 (2013), 98–108 (in Russian) | MR | Zbl
[22] V. V. Shcherbakov, “Optimal Control of Rigidity Parameter of Thin Inclusions in Elastic Bodies with Curvilinear Cracks”, J. Math. Sci., 203:4 (2014), 591–604 | DOI | MR | Zbl