Optimal control of the rigid layer size of the construction
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 3, pp. 86-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equilibrium problems of two-layer construction consisting of elastic and rigid layers are investigated. It is assumed that the elastic plate has a crack extending along the line which is the connection line of the construction parts. Passage to the limit on the size parameter of the construction rigid layer has been done. We consider the optimal control problem for the construction in which the cost functional is a derivative of the energy functional with respect to the length of the crack; control parameter is the parameter characterizing the size of the rigid layer.
Keywords: two-layer construction, crack, optimal control, the derivative of the energy functional.
@article{VNGU_2017_17_3_a8,
     author = {I. V. Frankina},
     title = {Optimal control of the rigid layer size of the construction},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {86--97},
     year = {2017},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a8/}
}
TY  - JOUR
AU  - I. V. Frankina
TI  - Optimal control of the rigid layer size of the construction
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 86
EP  - 97
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a8/
LA  - ru
ID  - VNGU_2017_17_3_a8
ER  - 
%0 Journal Article
%A I. V. Frankina
%T Optimal control of the rigid layer size of the construction
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 86-97
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a8/
%G ru
%F VNGU_2017_17_3_a8
I. V. Frankina. Optimal control of the rigid layer size of the construction. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 3, pp. 86-97. http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a8/

[1] S. A. Nazarov, B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundary, Nauka, M., 1991 (in Russian)

[2] N. F. Morozov, Mathematical Problems of Crack Theory, Nauka, M., 1984 (in Russian)

[3] A. M. Khludnev, Elasticity Problems in Nonsmooth Domains, Fizmatlit, M., 2010 (in Russian)

[4] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT Press, Southampton, 2000

[5] A. M. Khludnev, “On an equilibrium problem for a two-layer elastic body with a crack”, J. Appl. Indust. Math., 7:6 (2013), 370–379 | DOI | MR | Zbl

[6] T. S. Popova, “Passage to the limit in the problem on viscoelastic body with rigid inclusion and crack”, Vest. North-Eastern Fed. Univ. n.a. M.K. Ammosov, 11:1 (2014), 19–24 (in Russian)

[7] Khludnev A. M., Leugering G. R., “Optimal Control of Cracks in Elastic Bodies with Thin Rigid Inclusion”, Z. Angew. Math. Mech., 91:2 (2011), 125–137 | DOI | MR | Zbl

[8] N. P. Lazarev, N. V. Neustroeva, N. A. Nikolaeva, “Optimal control of tilt angles in equilibrium problems for the timoshenko plate with a oblique crack”, Sib. Elektron. Mat. Izv., 12 (2015), 300–308 (in Russian) | Zbl

[9] V. V. Shcherbakov, “On an optimal control problem for the shape of thin inclusions in elastic bodies”, J. Appl. Ind. Math., 7:3 (2013), 435–443 | DOI | MR | Zbl

[10] Khludnev A. M., Kovtunenko V. A., Tani A., “On the Topological Derivative due to Kink of a Crack with Non-penetration. Anti-Plane Model”, J. Math. Pures Appl., 94:6 (2010), 571–596 | DOI | MR | Zbl

[11] N. P. Lazarev, “Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack”, Sib. J. Pure and Appl. Math., 16:1 (2016), 90–105 (in Russian) | Zbl

[12] E. V. Pyatkina, “Optimal control of the layer size in the problem of equilibrium of elastic bodies with overlapping domains”, J. Appl. Indust. Math., 10:3 (2016), 435–443 | DOI | MR | Zbl

[13] Kovtunenko V. A., Leugering G., “A Shape-Topological Control Problem for Nonlinear Crack-Defect Interaction: the Anti-Plane Variational Model”, SIAM J. Control Optim., 54:3 (2016), 1329–1351 | DOI | MR | Zbl

[14] V. Z. Parton, E. M. Morozov, Mechanics of Elastic-Plastic Fracture, Nauka, M., 1985 (in Russian)

[15] G. P. Cherepanov, Mechanics of Brittle Fracture, Nauka, M., 1974 (in Russian)

[16] E. M. Rudoy, “Differentiation of energy functionals in two-dimensional elasticity theory for solids with curvilinear cracks”, J. Appl. Mech. Tech. Phys., 45:6 (2004), 843–852 | DOI | MR | Zbl

[17] E. M. Rudoy, “Griffith's formula and Cherepanov–Rice's integral for a plate with a rigid inclusion and a crack”, J. Math. Sci., 186:3 (2012), 511–529 | DOI | MR | Zbl

[18] Kovtunenko V. A., “Nonconvex Problem for Crack with Nonpenetration”, Z. Angew. Math. Mech., 85:4 (2005), 242–251 | DOI | MR | Zbl

[19] E. V. Vtorushin, “Analysis of the Derivative of the Energy Functional with Respect to the Length of a Curvilinear Crack in an Elastic Body with a Possible Crack-edge Contact”, J. Appl. Mech. Tech. Phys., 48:5 (2007), 737–742 | DOI | MR

[20] Gaudiello A., Khludnev A. M., “Crack on the Boundary of Two Overlapping Domains”, Z. Angew. Math. Phys., 61:2 (2010), 341–356 | DOI | MR | Zbl

[21] N. P. Lazarev, “The Griffith Formula for a Timoshenko-type Plate with a Curvilinear Track”, Sib. Zh. Ind. Mat., 16:2 (2013), 98–108 (in Russian) | MR | Zbl

[22] V. V. Shcherbakov, “Optimal Control of Rigidity Parameter of Thin Inclusions in Elastic Bodies with Curvilinear Cracks”, J. Math. Sci., 203:4 (2014), 591–604 | DOI | MR | Zbl