Mots-clés : elliptic equations, parabolic equations, final observation, nonlocal observation.
@article{VNGU_2017_17_3_a7,
author = {A. I. Prilepko and A. B. Kostin and V. V. Solov'ev},
title = {Inverse source and inverse coefficients problems for elliptic and parabolic equations in {H\"older} and {Sobolev} spaces},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {67--85},
year = {2017},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a7/}
}
TY - JOUR AU - A. I. Prilepko AU - A. B. Kostin AU - V. V. Solov'ev TI - Inverse source and inverse coefficients problems for elliptic and parabolic equations in Hölder and Sobolev spaces JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2017 SP - 67 EP - 85 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a7/ LA - ru ID - VNGU_2017_17_3_a7 ER -
%0 Journal Article %A A. I. Prilepko %A A. B. Kostin %A V. V. Solov'ev %T Inverse source and inverse coefficients problems for elliptic and parabolic equations in Hölder and Sobolev spaces %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2017 %P 67-85 %V 17 %N 3 %U http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a7/ %G ru %F VNGU_2017_17_3_a7
A. I. Prilepko; A. B. Kostin; V. V. Solov'ev. Inverse source and inverse coefficients problems for elliptic and parabolic equations in Hölder and Sobolev spaces. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 3, pp. 67-85. http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a7/
[1] A. V. Bitsadze, Boundary Value Problems for Second Order Elliptic Equations, Elsevier, 2012 | MR
[2] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, N.Y., 2000 | MR | Zbl
[3] A. I. Prilepko, “The semigroup method for inverse, nonlocal, and nonclassical problems. prediction-control and prediction-observation for evolution equations: I”, Differ. Equ., 41:11 (2005), 1635–1646 | DOI | MR | Zbl
[4] A. B. Kostin, “Basis property of a system of functions related to the inverse problem of finding the source”, Differ. Equ., 44:2 (2008), 256–266 | DOI | MR | Zbl
[5] V. L. Kamynin, A. B. Kostin, “Two inverse problems of finding a coefficient in a parabolic equation”, Differ. Equ., 46:3 (2010), 375–386 | DOI | MR | Zbl
[6] A. B. Kostin, “The inverse problem of recovering the source in a parabolic equation under a condition of nonlocal observation”, Mat. Sb., 204:10 (2013), 1391 | DOI | DOI | MR | Zbl
[7] A. B. Kostin, “Complex eigenvalues of elliptic operators and an example of inverse problem with nonunique solution”, Dokl. Math., 88:3 (2013), 651–654 | DOI | DOI | MR | Zbl
[8] V. L. Kamynin, A. B. Kostin, “Inverse problem of finding $n$ coefficients of lower derivatives in a parabolic equation”, Differ. Equ., 50:4 (2014), 476–488 | DOI | DOI | MR | Zbl
[9] A. B. Kostin, “Counterexamples in inverse problems for parabolic, elliptic, and hyperbolic equations”, Comp. Math. and Math. Phys., 54:5 (2014), 797–810 | DOI | DOI | MR | Zbl
[10] A. B. Kostin, “Inverse problem of finding the coefficient of $\mathbf{u}$ in a parabolic equation on the basis of a nonlocal observation condition”, Differ. Equ., 51:5 (2015), 605–619 | DOI | DOI | MR | Zbl
[11] V. V. Solov'ev, “Inverse problems for elliptic equations in the space: II”, Differ. Equ., 47:5 (2011), 715–725 | DOI | MR | Zbl
[12] V. V. Solov'ev, “Inverse coefficient problems for elliptic equations in a cylinder: I”, Differ. Equ., 49:8 (2013), 996–1005 | DOI | MR | Zbl
[13] V. V. Solov'ev, “Inverse coefficient problems for elliptic equations in a cylinder: II”, Differ. Equ., 49:12 (2013), 1560–1568 | DOI | MR | Zbl
[14] M. M. Lavrent'ev, V. G. Romanov, V. G. Vasil'ev, Multidimensional Inverse Problems for Differential Equations, Lecture Notes in Mathematics, 167, Springer Verlag, Berlin, 1974 | MR
[15] A. D. Iskenderov, R. G. Tagiev, “The inverse problem of determining the right-hand sides of evolution equations in Banach space”, Nauchn. Trudy Azerbaidzhan. Gos. Univ., 1 (1979), 51–56 | Zbl | Zbl
[16] Rundell W., “An Inverse Problem for an Elliptic Partial Differential Equation”, J. Math. Anall. Appl., 126 (1987), 329–340 | DOI | MR | Zbl
[17] D. G. Orlovskii, “On one inverse problem for differential equation of the second order in Banach space”, Differ. Uravn., 25:6 (1989), 1000–1009 (in Russian)
[18] D. G. Orlovskii, “On a problem of determining the parameter of an evolution equation”, Differ. Equ., 26:9 (1990), 1201–1207 | MR
[19] A. I. Prilepko, “Selected questions in inverse problems of mathematical physics”, Uslovno-korrektnye zadachi matematicheskoi fiziki i analiza, 1992, 51–63 (in Russian)
[20] A. Khaidarov, “A class of inverse problems for elliptic equations”, Differ. Equ., 23:8 (1987), 939–945 | MR | Zbl
[21] A. Khaidarov, “A class of inverse problems for elliptic equations”, Sib. Mat. Zh., 31:4 (1990), 149–159 (in Russian) | Zbl
[22] Y. S. Eidel'man, “Some inverse problems for parabolic and elliptic differential-operator equations”, Ukr. Math. J., 45:1 (1993), 132–140 | MR | Zbl
[23] O. Y. Imanuvilov, “Some class of inverse problems for semilinear elliptic and parabolic equations”, Trudy Moskov. Mat. Obshch., 55, 1994, 285–309 (in Russian) | Zbl
[24] Isakov V. M., Inverse Problems for Partial Differential Equations, Springer, N.Y., 2006 | MR | Zbl
[25] A. I. Prilepko, A. B. Kostin, “On certain inverse problems for parabolic equations with final and integral observation”, Mat. Sb., 183:4 (1992), 49–68 (in Russian) | Zbl
[26] A. I. Prilepko, A. B. Kostin, “Inverse problems of the determination of the coefficient in parabolic equations. I”, Sib. Math. J., 33:3 (1992), 489–496 | DOI | MR | Zbl
[27] A. I. Prilepko, A. B. Kostin, “Inverse problems of the determination of the coefficient in parabolic equations. II”, Sib. Math. J., 34:5 (1993), 923–937 | DOI | MR | Zbl
[28] A. I. Prilepko, V. V. Soloviev, “Solvability theorems and Rotes method for inverse problems for a parabolic equation. I”, Differ. Equ., 23:10 (1987), 1230–1237 | MR | Zbl | Zbl
[29] V. V. Solov'ev, “Solvability of the inverse problem of finding a source, using overdetermination on the upper base for a parabolic equation”, Differ. Equ., 25:9 (1989), 1114–1119 | Zbl
[30] Isakov V. M., “Inverse Parabolic Problems with the Final Overdetermination”, Comm. on Pure and Appl. Math., 44 (1991), 185–209 | DOI | MR | Zbl
[31] A. I. Prilepko, D. S. Tkachenko, “Properties of solutions to the parabolic equation and uniqueness of the solution to the inverse source problem with integral overdetermination”, Comp. Math. and Math. Phys., 43:4 (2003), 537–546 | MR | Zbl
[32] A. I. Prilepko, D. S. Tkachenko, “Fredholm property of the inverse source problem for parabolic systems”, Differ. Equ., 39:12 (2003), 1785–1793 | DOI | MR | Zbl
[33] A. I. Prilepko, I. V. Tikhonov, “Recovery of the nonhomogeneous term in an abstract evolution equation”, Izv. Math., 44:2 (1995), 373–394 | DOI | MR | Zbl
[34] Rundell W., “Determination of an Unknown Non-Homogeneous Term in a Linear Partial Differential Equation from over Specified Boundary Data”, Appl. Anal., 10:10 (1980), 231–240 | DOI | MR
[35] Y. S. Eidel'man, “Uniqueness of solution an inverse problem for differential equation in Banach space”, Differ. Uravn., 23:9 (1987), 1647–1649 (in Russian) | Zbl
[36] A. I. Prilepko, I. V. Tikhonov, “The principle of the positity of a solution to a linear inverse problem and its application to the heat conduction coefficient problem”, Dokl. Akad. Nauk, 364:1 (1999), 21–23 (in Russian) | Zbl
[37] I. V. Tikhonov, Yu. S. Eidel'man, “Uniqueness criterion in an inverse problem for an abstract differential equation with nonstationary inhomogeneous term”, Math. Notes, 77:2 (2005), 246–262 | DOI | DOI | MR | Zbl
[38] V. L. Kamynin, “On the unique solvability of an inverse problem for parabolic equations under a final overdetermination condition”, Math. Notes, 73:1–2 (2003), 202–211 | DOI | DOI | MR | Zbl
[39] V. L. Kamynin, “On the inverse problem of determining the right-hand side of a parabolic equation under an integral overdetermination condition”, Math. Notes, 77:3–4 (2005), 482–493 | DOI | DOI | MR | Zbl
[40] A. B. Kostin, “Solvability of one moments problem and its relationship with parabolic inverse problem”, Vestn. of Moscow Univ., 1995, no. 1, 28–33 (in Russian)
[41] A. I. Prilepko, V. V. Soloviev, “On the solvability of inverse boundary value problems for the determination of the coefficient preceding the lower derivative in a parabolic equation”, Differ. Equ., 23:1 (1987), 101–107 | MR | Zbl
[42] A. I. Kozhanov, “Nonlinear loaded equations and inverse problems”, Zh. Vychisl. Mat. Mat. Fiz., 44:4 (2004), 694–716 (in Russian) | Zbl
[43] A. I. Kozhanov, “Solvability of the inverse problem of finding thermal conductivity”, Sib. Math. J., 46:5 (2005), 841–856 | DOI | MR | Zbl
[44] A. I. Kozhanov, “Parabolic equations with an unknown absorption coefficient”, Dokl. Math., 74:1 (2006), 573–576 | DOI | MR | Zbl
[45] S. G. Pyatkov, B. N. Tsybikov, “Some classes of inverse evolution problems for parabolic equations”, Sib. Math. J., 50:1 (2009), 141–153 | DOI | MR | Zbl
[46] Kozhanov A. I., Safiullova R. R., “Linear Inverse Problems for Parabolic and Hyperbolic Equations”, J. of Inv. and Ill-Posed Probl., 18:1 (2010), 1–24 | DOI | MR | Zbl
[47] V. L. Kamynin, “Inverse problem of finding the coefficient of a lower derivative in a parabolic equation on the plane”, Differ. Equ., 48:2 (2012), 214–223 | DOI | MR | Zbl
[48] V. L. Kamynin, “The inverse problem of determining the lower-order coefficient in parabolic equations with integral observation”, Math. Notes, 94:1–2 (2013), 205–213 | DOI | DOI | MR | Zbl