@article{VNGU_2017_17_3_a6,
author = {M. V. Neshchadim},
title = {Generalized functional invariant solutions of wave equation for dimension~2},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {58--66},
year = {2017},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a6/}
}
M. V. Neshchadim. Generalized functional invariant solutions of wave equation for dimension 2. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 3, pp. 58-66. http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a6/
[1] M. V. Neshchadim, “Classes of generalized functional invariant solutions of wave equation. I”, Sib. Elektron. Mat. Izv., 10 (2013), 418–435 (in Russian) | Zbl
[2] M. V. Neshchadim, “Spherical generalized functional invariant solutions to the wave equations”, J. of Math. Sci., 211:6 (2015), 805–810 | DOI | MR | Zbl
[3] N. P. Erugin, M. M. Smirnov, “Functional invariant solutions of differential equations”, Differ. Uravn., 17:5 (1981), 853–865 (in Russian) | Zbl
[4] R. Courant, D. Gilbert, Methods of Mathematical Physics, v. 2, Interscience, New York, 1962 | MR | Zbl
[5] A. P. Kiselev, “Relatively undistorted cylindrical waves that depend on three space variables”, Mat. Zametki, 79:4 (2006), 635–636 (in Russian) | DOI | Zbl
[6] Friedlander F. G., “Simple Progressing Solutions of the Wave Equation”, Proc. Cambridge Phil. Soc., 43:3 (1947), 360–373 | DOI | MR | Zbl
[7] S. Soboleff, “Funktional-invariante Losungen der Wellengleichung”, Trav. Inst. Phys.-Math. Stekloff, 5, 1934, 259–264 (in Russian)
[8] V. Smirnoff, S. Soboleff, “Sur le probleme plan des vibrations elastiques”, CR Acad. Sci., Paris, 194 (1932), 1437–1439
[9] V. Smirnoff, S. Soboleff, “Sur l'application de la methode nouvelle a l'etude des vibrations elastiques dans l'espace a symetrie axial”, Proc. of the Seismological Institute, 29, Akad. Nauk SSSR, L., 1933, 43–51 (in Russian)
[10] S. Soboleff, Selected Works of S. L. Sobolev, v. 1, Equations of Mathematical Physics, Computational Mathematics, and Cubature Formulas, eds. V. L. Vaskevich, G. V. Demidenko, Inst. Mat. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2003 (in Russian)
[11] Kiselev A. P., Perel V. V., “Highly Localized Solutions of the Wave Equation”, J. Math. Phys., 41:4 (2000), 1934–1955 | DOI | MR | Zbl
[12] M. S. Shneerson, “Maxwell's equations and functional invariant solutions of wave equation”, Differ. Uravn., 4:4 (1968), 743–758 (in Russian) | Zbl
[13] H. Bateman, The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell's Equations, Dover, New York, 1955 | MR | Zbl
[14] Yu. E. Anikonov, M. V. Neshchadim, “On analytical methods in the theory of inverse problems for hyperbolic equations. I”, J. Appl. Ind. Math., 5:4 (2011), 1–14 | MR | Zbl
[15] Yu. E. Anikonov, M. V. Neshchadim, “On analytical methods in the theory of inverse problems for hyperbolic equations. II”, Sib. Zh. Ind. Mat., 14:2 (2011), 28–33 (in Russian)
[16] Yu. E. Anikonov, M. V. Neshchadim, “Representations for the solutions and coefficients of second-order differential equations”, Sib. Zh. Ind. Mat., 15:4 (2012), 17–23 (in Russian)
[17] Yu. E. Anikonov, M. V. Neshchadim, “Representations for the solutions and coefficients of evolution equations”, Sib. Zh. Ind. Mat., 16:2 (2013), 40–49 (in Russian) | Zbl
[18] A. V. Borovskikh, “Group classification of the eikonal equation for a 3-dimensional inhomogeneous medium”, Mat. Sb., 195:4 (2004), 479–520 | DOI | DOI | MR | Zbl
[19] V. I. Fushchich, R. Z. Zhdanov, I. V. Revenko, “General solutions of the nonlinear wave equation and of the eikonal equation”, Ukr. Math. J., 43:11 (1991), 1364–1379 | DOI | MR | Zbl