On the non-uniqueness of the solution of the inner Neumann–Gellerstedt problem for the Lavrent'ev–Bitsadze equation
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 3, pp. 52-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that the Gellerstedt problem for the Lavrent'ev–Bitsadze equation under classical conditions of gluing a solution on the line of degeneracy of the equation has only trivial solutions. In particular, in the monograph A. V. Bitsadze “Some classes of partial differential equations” such kind of problem was investigated by the method of reduction to singular integral equations. In the works of T. E. Moiseyev, it was shown for the first time that the homogeneous problem of Gellerstedt with data on external characteristics has a nontrivial solution under the Frankl-type gluing condition for the solution on the line of degeneracy of the equation. In this paper we consider the homogeneous Neumann–Gellerstedt problem with data on internal characteristics. It is proved that this problem has a nontrivial solution under the Frankl-type gluing conditions for the solution on the line of degeneracy of the equation.
Keywords: mixed-type equation, boundary problem, uniqueness of the solution of the boundary problem.
@article{VNGU_2017_17_3_a5,
     author = {E. I. Moiseev and T. E. Moiseev and A. A. Kholomeeva},
     title = {On the non-uniqueness of the solution of the inner {Neumann{\textendash}Gellerstedt} problem for the {Lavrent'ev{\textendash}Bitsadze} equation},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {52--57},
     year = {2017},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a5/}
}
TY  - JOUR
AU  - E. I. Moiseev
AU  - T. E. Moiseev
AU  - A. A. Kholomeeva
TI  - On the non-uniqueness of the solution of the inner Neumann–Gellerstedt problem for the Lavrent'ev–Bitsadze equation
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 52
EP  - 57
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a5/
LA  - ru
ID  - VNGU_2017_17_3_a5
ER  - 
%0 Journal Article
%A E. I. Moiseev
%A T. E. Moiseev
%A A. A. Kholomeeva
%T On the non-uniqueness of the solution of the inner Neumann–Gellerstedt problem for the Lavrent'ev–Bitsadze equation
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 52-57
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a5/
%G ru
%F VNGU_2017_17_3_a5
E. I. Moiseev; T. E. Moiseev; A. A. Kholomeeva. On the non-uniqueness of the solution of the inner Neumann–Gellerstedt problem for the Lavrent'ev–Bitsadze equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 3, pp. 52-57. http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a5/

[1] A. V. Bitsadze, Some Classes of Partial Differential Equations, Nauka, M., 1981 (in Russian)

[2] M. M. Smirnov, Equations of Mixed Type, M., 1985 (in Russian)

[3] T. E. Moiseev, “Gellerstedt problem with a generalized Frankl matching condition on the type change line with data on external characteristics”, Differ. Equ., 52:2 (2016), 240–247 | DOI | DOI | MR | Zbl

[4] T. E. Moiseev, “Gellerstedt problem with nonclassical matching conditions for the solution gradient on the type change line with data on internal characteristics”, Differ. Equ., 52:8 (2016), 1023–1029 | DOI | DOI | MR | Zbl

[5] T. E. Moiseev, “On the nonuniqueness of the solution of a mixed boundary value problem for the Laplace equation”, Differ. Equ., 44:5 (2008), 734–736 | DOI | MR | Zbl

[6] T. E. Moiseev, “On the basis property of a system of sines”, Differ. Uravn., 23:1 (1987), 177–179 (in Russian)

[7] E. I. Moiseev, N. O. Taranov, “Solution of a Gellerstedt problem for the Lavrent'ev–Bitsadze equation”, Differ. Equ., 45:4 (2009), 558–563 | DOI | MR | Zbl

[8] E. I. Moiseev, N. O. Taranov, “Integral representation of the solution of a Gellerstedt problem”, Differ. Equ., 45:11 (2009), 1588–1594 | DOI | MR | Zbl

[9] E. I. Moiseev, P. V. Nefedov, A. A. Kholomeeva, “Analog of the Gellerstedt problem for the Lavrent'ev-Bitsadze equation in a 3D domain”, Differ. Equ., 51:6 (2015), 827–829 | DOI | DOI | MR | Zbl