Nonlocal boundary-value problems with partially integral conditions for degenerate differential equations with multiple characteristics
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 3, pp. 37-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the solvability of new local and nonlocal boundary-value problems for degenerate differential equations with multiple characteristics. For the problems under consideration, we prove the theorems on the existence of regular solutions (which have all generalized Sobolev derivatives occurring in the equation). We give also the possible generalizations and strengthening of the results.
Keywords: degenerate differential equations with multiple characteristics, nonlocal problems, regular solutions
Mots-clés : existence.
@article{VNGU_2017_17_3_a4,
     author = {A. I. Kozhanov and G. A. Lukina},
     title = {Nonlocal boundary-value problems with partially integral conditions for degenerate differential equations with multiple characteristics},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {37--51},
     year = {2017},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a4/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - G. A. Lukina
TI  - Nonlocal boundary-value problems with partially integral conditions for degenerate differential equations with multiple characteristics
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 37
EP  - 51
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a4/
LA  - ru
ID  - VNGU_2017_17_3_a4
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A G. A. Lukina
%T Nonlocal boundary-value problems with partially integral conditions for degenerate differential equations with multiple characteristics
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 37-51
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a4/
%G ru
%F VNGU_2017_17_3_a4
A. I. Kozhanov; G. A. Lukina. Nonlocal boundary-value problems with partially integral conditions for degenerate differential equations with multiple characteristics. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 3, pp. 37-51. http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a4/

[1] T. D. Dzhuraev, Boundary Value Problems for Equations of Mixed and Mixed-Composite Types, FAN, Tashkent, 1986 (in Russian)

[2] B. A. Bubnov, “Generalized boundary value problems for the Korteweg–de Vries equation in bounded domain”, Differ. Equ., 15 (1979), 17–21 | MR | Zbl

[3] V. V. Khablov, On Some Well-Posed Statements of Boundary-Value Problems for the Korteweg–de Vries Equation, Preprint, IM SO AN USSR, Novosibirsk, 1979 (in Russian)

[4] S. Abdinazarov, “General boundary value problems for an equation of third order with multiple characteristics”, Differ. Equ., 17 (1981), 3–12 | MR | Zbl

[5] Kenig C. E., Ponce G., Vega L., “Well-Posedness and Scattering Results for the Generalized Korteweg–de Vries Equation and the Contraction Principle”, Comm. Pure Appl. Math., 46:4 (1993), 527–620 | DOI | MR | Zbl

[6] A. I. Kozhanov, “On the solvability of a nonlocal time problem for an equation with multiple characteristics”, Mat. Zamet. YAGU, 8:2 (2001), 27–40 (in Russian)

[7] A. I. Kozhanov, “On the determination of sources in the linearized Korteweg–de Vries equation”, Mat. Zamet. YAGU, 9:2 (2002), 74–82 (in Russian)

[8] Larkin N. A., “Korteweg–de Vries and Kuramoto–Sivashinsky Equatuion in Bounded Domains”, J. Math. Anal. Appl., 297:2 (2004), 169–185 | DOI | MR | Zbl

[9] A. I. Kozhanov, “Inverse problems for an equation with a multiple characteristic: the case of an unknown coefficient that depends on time”, Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy Akademii Nauk, 8:1 (2005), 38–49 (in Russian)

[10] Larkin N. A., “Correct Initial Boundary Value Problems for Dispersive Equations”, J. Math. Anal. Appl., 344:2 (2008), 1079–1092 | DOI | MR | Zbl

[11] Faminski A. V., Larkin N. A., “Initial-Value Problems for Quasilinear Dispersive Equations Posed in Bounded Interval”, Electronic J. of Diff. Equat., 2010:1 (2010), 1–20 | MR

[12] G. A. Lukina, “Boundary value problems with integral conditions for the linearized Korteweg–de Vries equation”, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program., 17(234):8 (2011), 53–62 (in Russian)

[13] A. R. Khashimov, A. M. Turginov, “On some nonlocal problems for third order equations with multiple characteristics”, Mat. Zamet. SVFU, 21:1 (2014), 69–74 (in Russian)

[14] Baudouin L., Cerra E., Crepeau E., Mercado A., “On the Determination of the Principal Coefficient from Boundary Measurements in a KdV Equation”, J. of Inverse Ill-Posed Problems, 22:6 (2014), 819–846 | DOI | MR

[15] Kozhanov A. I., Potapova S. V., “Conjugate Problem for a Third Order Equation with Multiple Characteristics and a Positive Function at the Higher Order Derivative”, J. of Math. Sci., 215:4 (2016), 510–516 | DOI | MR

[16] V. I. Antipin, “Solvability of a boundary value problem for a third order equation with changing time direction”, Mat. Zamet. YAGU, 18:1 (2011), 8–15 (in Russian)

[17] V. I. Antipin, S. V. Popov, “About smooth Gevrey solutions for equations of the third order”, Mat. Zamet. SVFU, 22:1 (2011), 3–12 (in Russian)

[18] V. A. Trenogin, Functional Analysis, Nauka, M., 1980 (in Russian)

[19] J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites non Lineaires, Dunod Gauthier-Villars, Paris, 1969 | MR | Zbl

[20] A. I. Kozhanov, L. S. Pulkina, “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differ. Equ., 42:9 (2006), 1233–1246 | DOI | MR | Zbl

[21] Kozhanov A. I., “On the Solvability of Certain Boundary Value Problems with the Bitsadze–Samarskii Condition for Linear Hyperbolic Equations”, J. of Math. Sci., 173:2 (2011), 207–220 | DOI | MR | Zbl

[22] A. I. Kozhanov, “On the solvability of certain spatially nonlocal boundary-value problems for linear hyperbolic equations of second order”, Math. Notes, 90:2 (2011), 238–249 | DOI | DOI | MR | Zbl