Mots-clés : existence.
@article{VNGU_2017_17_3_a4,
author = {A. I. Kozhanov and G. A. Lukina},
title = {Nonlocal boundary-value problems with partially integral conditions for degenerate differential equations with multiple characteristics},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {37--51},
year = {2017},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a4/}
}
TY - JOUR AU - A. I. Kozhanov AU - G. A. Lukina TI - Nonlocal boundary-value problems with partially integral conditions for degenerate differential equations with multiple characteristics JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2017 SP - 37 EP - 51 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a4/ LA - ru ID - VNGU_2017_17_3_a4 ER -
%0 Journal Article %A A. I. Kozhanov %A G. A. Lukina %T Nonlocal boundary-value problems with partially integral conditions for degenerate differential equations with multiple characteristics %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2017 %P 37-51 %V 17 %N 3 %U http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a4/ %G ru %F VNGU_2017_17_3_a4
A. I. Kozhanov; G. A. Lukina. Nonlocal boundary-value problems with partially integral conditions for degenerate differential equations with multiple characteristics. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 3, pp. 37-51. http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a4/
[1] T. D. Dzhuraev, Boundary Value Problems for Equations of Mixed and Mixed-Composite Types, FAN, Tashkent, 1986 (in Russian)
[2] B. A. Bubnov, “Generalized boundary value problems for the Korteweg–de Vries equation in bounded domain”, Differ. Equ., 15 (1979), 17–21 | MR | Zbl
[3] V. V. Khablov, On Some Well-Posed Statements of Boundary-Value Problems for the Korteweg–de Vries Equation, Preprint, IM SO AN USSR, Novosibirsk, 1979 (in Russian)
[4] S. Abdinazarov, “General boundary value problems for an equation of third order with multiple characteristics”, Differ. Equ., 17 (1981), 3–12 | MR | Zbl
[5] Kenig C. E., Ponce G., Vega L., “Well-Posedness and Scattering Results for the Generalized Korteweg–de Vries Equation and the Contraction Principle”, Comm. Pure Appl. Math., 46:4 (1993), 527–620 | DOI | MR | Zbl
[6] A. I. Kozhanov, “On the solvability of a nonlocal time problem for an equation with multiple characteristics”, Mat. Zamet. YAGU, 8:2 (2001), 27–40 (in Russian)
[7] A. I. Kozhanov, “On the determination of sources in the linearized Korteweg–de Vries equation”, Mat. Zamet. YAGU, 9:2 (2002), 74–82 (in Russian)
[8] Larkin N. A., “Korteweg–de Vries and Kuramoto–Sivashinsky Equatuion in Bounded Domains”, J. Math. Anal. Appl., 297:2 (2004), 169–185 | DOI | MR | Zbl
[9] A. I. Kozhanov, “Inverse problems for an equation with a multiple characteristic: the case of an unknown coefficient that depends on time”, Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy Akademii Nauk, 8:1 (2005), 38–49 (in Russian)
[10] Larkin N. A., “Correct Initial Boundary Value Problems for Dispersive Equations”, J. Math. Anal. Appl., 344:2 (2008), 1079–1092 | DOI | MR | Zbl
[11] Faminski A. V., Larkin N. A., “Initial-Value Problems for Quasilinear Dispersive Equations Posed in Bounded Interval”, Electronic J. of Diff. Equat., 2010:1 (2010), 1–20 | MR
[12] G. A. Lukina, “Boundary value problems with integral conditions for the linearized Korteweg–de Vries equation”, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program., 17(234):8 (2011), 53–62 (in Russian)
[13] A. R. Khashimov, A. M. Turginov, “On some nonlocal problems for third order equations with multiple characteristics”, Mat. Zamet. SVFU, 21:1 (2014), 69–74 (in Russian)
[14] Baudouin L., Cerra E., Crepeau E., Mercado A., “On the Determination of the Principal Coefficient from Boundary Measurements in a KdV Equation”, J. of Inverse Ill-Posed Problems, 22:6 (2014), 819–846 | DOI | MR
[15] Kozhanov A. I., Potapova S. V., “Conjugate Problem for a Third Order Equation with Multiple Characteristics and a Positive Function at the Higher Order Derivative”, J. of Math. Sci., 215:4 (2016), 510–516 | DOI | MR
[16] V. I. Antipin, “Solvability of a boundary value problem for a third order equation with changing time direction”, Mat. Zamet. YAGU, 18:1 (2011), 8–15 (in Russian)
[17] V. I. Antipin, S. V. Popov, “About smooth Gevrey solutions for equations of the third order”, Mat. Zamet. SVFU, 22:1 (2011), 3–12 (in Russian)
[18] V. A. Trenogin, Functional Analysis, Nauka, M., 1980 (in Russian)
[19] J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites non Lineaires, Dunod Gauthier-Villars, Paris, 1969 | MR | Zbl
[20] A. I. Kozhanov, L. S. Pulkina, “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differ. Equ., 42:9 (2006), 1233–1246 | DOI | MR | Zbl
[21] Kozhanov A. I., “On the Solvability of Certain Boundary Value Problems with the Bitsadze–Samarskii Condition for Linear Hyperbolic Equations”, J. of Math. Sci., 173:2 (2011), 207–220 | DOI | MR | Zbl
[22] A. I. Kozhanov, “On the solvability of certain spatially nonlocal boundary-value problems for linear hyperbolic equations of second order”, Math. Notes, 90:2 (2011), 238–249 | DOI | DOI | MR | Zbl