Dirichlet type problem for strictly hyperbolic systems of first order with constant coefficients in two dimensional domain
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 3, pp. 17-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work is considered strictly hyperbolic system of first order with constant coefficients in bounded domain with piecewise boundary. That system consists eight scalar equations. It is supposed, that boundary of that domain contain eight smooth noncharacteristic arcs. Two linear combination of unknown solution of system at the boundary of domain is given. For some conditions on the coefficients of that linear combinations, boundary of domain and behavior of solution near characteristics, which pass through an edge of boundary, unique solvability of such problems is proved.
Keywords: Dirichlet problem, strictly hyperbolic system first order, solvability.
Mots-clés : constant coefficients, admissible domain
@article{VNGU_2017_17_3_a2,
     author = {N. A. Zhura and V. A. Polunin},
     title = {Dirichlet type problem for strictly hyperbolic systems of first order with constant coefficients in two dimensional domain},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {17--32},
     year = {2017},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a2/}
}
TY  - JOUR
AU  - N. A. Zhura
AU  - V. A. Polunin
TI  - Dirichlet type problem for strictly hyperbolic systems of first order with constant coefficients in two dimensional domain
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 17
EP  - 32
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a2/
LA  - ru
ID  - VNGU_2017_17_3_a2
ER  - 
%0 Journal Article
%A N. A. Zhura
%A V. A. Polunin
%T Dirichlet type problem for strictly hyperbolic systems of first order with constant coefficients in two dimensional domain
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 17-32
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a2/
%G ru
%F VNGU_2017_17_3_a2
N. A. Zhura; V. A. Polunin. Dirichlet type problem for strictly hyperbolic systems of first order with constant coefficients in two dimensional domain. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 3, pp. 17-32. http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a2/

[1] A. V. Bitsadze, Some Classes of Partial Differential Equations, Nauka, M., 1981 (in Russian)

[2] A. V. Bitsadze, Selected Works, MAKS Press, M., 2016 (in Russian)

[3] S. S. Kharibegashvili, “On a problem of Goursat type for a class of systems of equations of hyperbolic type of the second order”, Differ. Uravn., 18:1 (1982), 152–166 (in Russian) | Zbl

[4] S. S. Kharibegashvili, Boundary Value Problems for Systems of Second-Order Linear Differential Equations of Hyperbolic Type, Thes. Doc. Math.-Phys. Degree, Tbilisi, 1986 (in Russian)

[5] Bourgin D. G., Duffing R., “The Dirichlet Problem for the Vibrating String Equation”, Bull. of the American Math. Soc., 45 (1939), 851–859 | DOI | MR

[6] John F., “The Dirichlet Problem for a Hyperbolic Equation”, American J. of Math., 63:1 (1941), 141–154 | DOI | MR

[7] R. A. Alexandrian, “On the Dirichlet problem for the string equation and on the completeness of one system of functions in the disk”, Dokl. Akad. Nauk SSSR, 73:5 (1950), 869–872 (in Russian) | Zbl

[8] S. L. Sobolev, “An example of a correct boundary-value problem for the equation of oscillation of a string with a task on the entire boundary”, Dokl. Akad. Nauk SSSR, 109:4 (1956), 707–709 (in Russian) | Zbl

[9] Yu. M. Berezansky, “On the Dirichlet problem for the string oscillation equation”, Ukrain Math. J., 12:4 (1960), 363–372 (in Russian) | Zbl

[10] M. V. Fokin, “On the solvability of the Dirichlet problem for the equation of oscillations of a string”, Dokl. Akad. Nauk SSSR, 272:4 (1983), 801–805 (in Russian) | Zbl

[11] Yu. N. Shishmareva, “Problems of Riemann–Hilbert type for the system of equations string oscillations”, Eurasian Math. J., 2006, no. 3, 87–102 (in Russian)

[12] Vakhania N., “On Boundary Value Problems for the Hyperbolic Case”, J. of Complexity, 10 (1994), 341–355 | DOI | MR | Zbl

[13] Bennish J., “The Mixed Dirichlet–Neumann–Cauchy Problem for Second Order Hyperbolic Operators”, J. Math. Anal. Appl., 209:1 (1997), 243–254 | DOI | MR | Zbl

[14] Fox D. W., Pucci C., “The Dirichlet Problem for the Wave Equation”, Ann. Mat. Pura Appl. (IV), 46 (1958), 155–182 | DOI | MR | Zbl

[15] N. A. Zhura, A. P. Soldatov, “A boundary value problem for a first-order hyperbolic system in a two-dimensional domain”, Izv. Akad. Nauk. Ser. Mat., 81:3 (2017), 83–108 (in Russian) | DOI | Zbl

[16] W. Rudin, Functional analysis, McGraw-Hill, 1973 | MR | Zbl

[17] A. P. Soldatov, “On the spectral radius of functional operators”, Mat. Zametki, 100:1 (2016), 154–161 (in Russian) | DOI