Mots-clés : constant coefficients, admissible domain
@article{VNGU_2017_17_3_a2,
author = {N. A. Zhura and V. A. Polunin},
title = {Dirichlet type problem for strictly hyperbolic systems of first order with constant coefficients in two dimensional domain},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {17--32},
year = {2017},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a2/}
}
TY - JOUR AU - N. A. Zhura AU - V. A. Polunin TI - Dirichlet type problem for strictly hyperbolic systems of first order with constant coefficients in two dimensional domain JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2017 SP - 17 EP - 32 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a2/ LA - ru ID - VNGU_2017_17_3_a2 ER -
%0 Journal Article %A N. A. Zhura %A V. A. Polunin %T Dirichlet type problem for strictly hyperbolic systems of first order with constant coefficients in two dimensional domain %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2017 %P 17-32 %V 17 %N 3 %U http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a2/ %G ru %F VNGU_2017_17_3_a2
N. A. Zhura; V. A. Polunin. Dirichlet type problem for strictly hyperbolic systems of first order with constant coefficients in two dimensional domain. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 3, pp. 17-32. http://geodesic.mathdoc.fr/item/VNGU_2017_17_3_a2/
[1] A. V. Bitsadze, Some Classes of Partial Differential Equations, Nauka, M., 1981 (in Russian)
[2] A. V. Bitsadze, Selected Works, MAKS Press, M., 2016 (in Russian)
[3] S. S. Kharibegashvili, “On a problem of Goursat type for a class of systems of equations of hyperbolic type of the second order”, Differ. Uravn., 18:1 (1982), 152–166 (in Russian) | Zbl
[4] S. S. Kharibegashvili, Boundary Value Problems for Systems of Second-Order Linear Differential Equations of Hyperbolic Type, Thes. Doc. Math.-Phys. Degree, Tbilisi, 1986 (in Russian)
[5] Bourgin D. G., Duffing R., “The Dirichlet Problem for the Vibrating String Equation”, Bull. of the American Math. Soc., 45 (1939), 851–859 | DOI | MR
[6] John F., “The Dirichlet Problem for a Hyperbolic Equation”, American J. of Math., 63:1 (1941), 141–154 | DOI | MR
[7] R. A. Alexandrian, “On the Dirichlet problem for the string equation and on the completeness of one system of functions in the disk”, Dokl. Akad. Nauk SSSR, 73:5 (1950), 869–872 (in Russian) | Zbl
[8] S. L. Sobolev, “An example of a correct boundary-value problem for the equation of oscillation of a string with a task on the entire boundary”, Dokl. Akad. Nauk SSSR, 109:4 (1956), 707–709 (in Russian) | Zbl
[9] Yu. M. Berezansky, “On the Dirichlet problem for the string oscillation equation”, Ukrain Math. J., 12:4 (1960), 363–372 (in Russian) | Zbl
[10] M. V. Fokin, “On the solvability of the Dirichlet problem for the equation of oscillations of a string”, Dokl. Akad. Nauk SSSR, 272:4 (1983), 801–805 (in Russian) | Zbl
[11] Yu. N. Shishmareva, “Problems of Riemann–Hilbert type for the system of equations string oscillations”, Eurasian Math. J., 2006, no. 3, 87–102 (in Russian)
[12] Vakhania N., “On Boundary Value Problems for the Hyperbolic Case”, J. of Complexity, 10 (1994), 341–355 | DOI | MR | Zbl
[13] Bennish J., “The Mixed Dirichlet–Neumann–Cauchy Problem for Second Order Hyperbolic Operators”, J. Math. Anal. Appl., 209:1 (1997), 243–254 | DOI | MR | Zbl
[14] Fox D. W., Pucci C., “The Dirichlet Problem for the Wave Equation”, Ann. Mat. Pura Appl. (IV), 46 (1958), 155–182 | DOI | MR | Zbl
[15] N. A. Zhura, A. P. Soldatov, “A boundary value problem for a first-order hyperbolic system in a two-dimensional domain”, Izv. Akad. Nauk. Ser. Mat., 81:3 (2017), 83–108 (in Russian) | DOI | Zbl
[16] W. Rudin, Functional analysis, McGraw-Hill, 1973 | MR | Zbl
[17] A. P. Soldatov, “On the spectral radius of functional operators”, Mat. Zametki, 100:1 (2016), 154–161 (in Russian) | DOI