Local solvability of the initial-boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multifluids
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 2, pp. 52-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the initial boundary value problem governing unsteady polytropic motions of viscous compressible multifluids. We prove the existence and uniqueness of a strong solution to the problem.
Keywords: existence theorem, unsteady boundary value problem, homogeneous mixture with multiple velocities.
Mots-clés : viscous compressible fluid
@article{VNGU_2017_17_2_a4,
     author = {A. E. Mamontov and D. A. Prokudin},
     title = {Local solvability of the initial-boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multifluids},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {52--68},
     year = {2017},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a4/}
}
TY  - JOUR
AU  - A. E. Mamontov
AU  - D. A. Prokudin
TI  - Local solvability of the initial-boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multifluids
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 52
EP  - 68
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a4/
LA  - ru
ID  - VNGU_2017_17_2_a4
ER  - 
%0 Journal Article
%A A. E. Mamontov
%A D. A. Prokudin
%T Local solvability of the initial-boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multifluids
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 52-68
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a4/
%G ru
%F VNGU_2017_17_2_a4
A. E. Mamontov; D. A. Prokudin. Local solvability of the initial-boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multifluids. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 2, pp. 52-68. http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a4/

[1] N. A. Kucher, D. A. Prokudin, “Stationary solutions to the equations of a mixture of compressible viscous fluids”, Sib. Zh. Ind. Mat., 12:3 (2009), 52–65 (in Russian)

[2] N. A. Kucher, A. E. Mamontov, D. A. Prokudin, “Stationary Solutions to the equations of dynamics of mixtures of heat–conductive compressible viscous fluids”, Sib. Math. J., 53:6 (2012), 1075–1088 | DOI | MR | Zbl

[3] A. E. Mamontov, D. A. Prokudin, “Solubility of a Stationary boundary–value problem for the equations of motion of a one–temperature mixture of viscous compressible heat–conducting fluids”, Izv. Math., 78:3 (2014), 554–579 | DOI | DOI | MR | Zbl

[4] A. E. Mamontov, D. A. Prokudin, “Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Sib. Elektron. Mat. Izv., 13 (2016), 541–583 (in Russian) | Zbl

[5] Mamontov A. E., Prokudin D. A., “Viscous Compressible Multi–Fluids: Modeling and Multi-D Existence”, Methods Appl. of Anal., 20:2 (2013), 179–195 | MR

[6] A. V. Kazhikov, A. N. Petrov, “Well–posedness of the initial–boundary value problem for a model system of equations of a multicomponent mixture”, Din. Splosh. Sredy, 35 (1978), 61–73 (in Russian)

[7] A. N. Petrov, “Well–posedness of initial–boundary value problems for one–dimensional equations of mutually penetrating flows of ideal gases”, Din. Splosh. Sredy, 56 (1972), 105–121 (in Russian)

[8] A. V. Kazhikov, Selected Works. Mathematical Hydrodynamics, Lavrentyev Institute of Hydrodynamics, Novosibirsk, 2008 (in Russian)

[9] Müller I., “A Thermodynamic Theory of Mixtures of Fluids”, Arch. Rat. Mech. Anal., 28 (1968), 1–39 | DOI | MR | Zbl

[10] R. I. Nigmatulin, Dynamics of Multiphase Media, v. 1, Nauka, M., 1987 (in Russian)

[11] Rajagopal K. L., Tao L., Mechanics of Mixtures, World Scientific Publishing, River Edge, 1995 | MR | Zbl

[12] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Nauka, Novosibirsk, 1983 (in Russian)

[13] Novotný A., Straškraba I., Introduction to the Mathematical Theory of Compressible Flow, Oxford University Press, Oxford, 2004 | MR | Zbl