The structure of the main tensor of conformally connected torsion-free space. Conformal connections on hypersurfaces of projective space
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 2, pp. 21-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define a conformally connected space with arbitrary signature of angular metric and present basic formulas and classes of such spaces. We obtain the decomposition of the main tensor of a conformally connected torsion-free space into irreducible gauge-invariant summands and prove the following new property of the Weyl tensor: all affine connections obtained from the Levi-Civita connection via the normalization transformation have the same conformal Weyl tensor. We describe all conformal torsion-free connections on hypersurfaces of a projective space and give some examples. We construct a global conformal connection on a hyperquadric of the projective space.
Keywords: conformally connected space, Weyl tensor of conformal curvature, angular metric, gauge transformations, curvature
Mots-clés : torsion.
@article{VNGU_2017_17_2_a2,
     author = {L. N. Krivonosov and V. A. Luk'yanov},
     title = {The structure of the main tensor of conformally connected torsion-free space. {Conformal} connections on hypersurfaces of projective space},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {21--38},
     year = {2017},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a2/}
}
TY  - JOUR
AU  - L. N. Krivonosov
AU  - V. A. Luk'yanov
TI  - The structure of the main tensor of conformally connected torsion-free space. Conformal connections on hypersurfaces of projective space
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 21
EP  - 38
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a2/
LA  - ru
ID  - VNGU_2017_17_2_a2
ER  - 
%0 Journal Article
%A L. N. Krivonosov
%A V. A. Luk'yanov
%T The structure of the main tensor of conformally connected torsion-free space. Conformal connections on hypersurfaces of projective space
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 21-38
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a2/
%G ru
%F VNGU_2017_17_2_a2
L. N. Krivonosov; V. A. Luk'yanov. The structure of the main tensor of conformally connected torsion-free space. Conformal connections on hypersurfaces of projective space. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 2, pp. 21-38. http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a2/

[1] E. Cartan, “Sur les espaces a connexion conforme”, Ann. Soc. polon. math., 2 (1923), 171–221

[2] A. Lichnerowicz, Theorie Globale des Connexions et des Groupes d'Holonomie, Edizioni Cremonese, Roma, 1955 | MR | Zbl

[3] L. N. Krivonosov, V. A. Luk'yanov, “Einstein's equations on a 4-manifold of conformal torsion-free connection”, Zh. Sib. Federal. Uni., 5:3 (2012), 393–408 (in Russian)

[4] L. N. Krivonosov, V. A. Luk'yanov, “Gauge-invariant tensors of 4-manifold with conformal torsion-free connection and their applications for modeling of space-time”, Vestn. Samar. Gos. Tehn. Uni. Ser. Fiz.-Mat. Nauki, 2014, no. 2, 180–198 (in Russian) | DOI

[5] L. N. Krivonosov, V. A. Luk'yanov, “The relationship between the Einstein and Yang–Mills equations”, Russian Math., 53:9 (2009), 62–66 | DOI | MR | Zbl

[6] L. N. Krivonosov, V. A. Luk'yanov, “Connection of Yang–Mills equations with Einstein and Maxwell's equations”, Zh. Sib. Federal. Uni. Ser. Mat. i Fiz., 2:4 (2009), 432–448 (in Russian)

[7] V. A. Luk'yanov, “The Yang–Mills equations on four-dimensional manifolds of conformal connection”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 3, 67–72 (in Russian)

[8] G. F. Laptev, “Differential geometry of immersed manifolds. The group-theoretic method of differential-geometric researches”, Trudy Moskov. Mat. Obshch., 2, 1953, 275–382 (in Russian) | Zbl

[9] M. A. Akivis, V. V. Konnov, “Some local aspects of the theory of conformal structure”, Uspekhi Mat. Nauk, 48:1 (1993), 1–35 | MR | Zbl

[10] M. M. Postnikov, Differential Geometry, Nauka, M., 1988 (in Russian)

[11] A. V. Stolyarov, “Intrinsic geometry of a normed conformal space”, Izv. Vyssh. Uchebn. Zaved. Mat., 46:11 (2002), 57–65 | MR | Zbl

[12] A. V. Stolyarov, “A space with conformal connection”, Izv. Vyssh. Uchebn. Zaved. Mat., 50:11 (2006), 40–51 | MR