Mots-clés : torsion.
@article{VNGU_2017_17_2_a2,
author = {L. N. Krivonosov and V. A. Luk'yanov},
title = {The structure of the main tensor of conformally connected torsion-free space. {Conformal} connections on hypersurfaces of projective space},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {21--38},
year = {2017},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a2/}
}
TY - JOUR AU - L. N. Krivonosov AU - V. A. Luk'yanov TI - The structure of the main tensor of conformally connected torsion-free space. Conformal connections on hypersurfaces of projective space JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2017 SP - 21 EP - 38 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a2/ LA - ru ID - VNGU_2017_17_2_a2 ER -
%0 Journal Article %A L. N. Krivonosov %A V. A. Luk'yanov %T The structure of the main tensor of conformally connected torsion-free space. Conformal connections on hypersurfaces of projective space %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2017 %P 21-38 %V 17 %N 2 %U http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a2/ %G ru %F VNGU_2017_17_2_a2
L. N. Krivonosov; V. A. Luk'yanov. The structure of the main tensor of conformally connected torsion-free space. Conformal connections on hypersurfaces of projective space. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 2, pp. 21-38. http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a2/
[1] E. Cartan, “Sur les espaces a connexion conforme”, Ann. Soc. polon. math., 2 (1923), 171–221
[2] A. Lichnerowicz, Theorie Globale des Connexions et des Groupes d'Holonomie, Edizioni Cremonese, Roma, 1955 | MR | Zbl
[3] L. N. Krivonosov, V. A. Luk'yanov, “Einstein's equations on a 4-manifold of conformal torsion-free connection”, Zh. Sib. Federal. Uni., 5:3 (2012), 393–408 (in Russian)
[4] L. N. Krivonosov, V. A. Luk'yanov, “Gauge-invariant tensors of 4-manifold with conformal torsion-free connection and their applications for modeling of space-time”, Vestn. Samar. Gos. Tehn. Uni. Ser. Fiz.-Mat. Nauki, 2014, no. 2, 180–198 (in Russian) | DOI
[5] L. N. Krivonosov, V. A. Luk'yanov, “The relationship between the Einstein and Yang–Mills equations”, Russian Math., 53:9 (2009), 62–66 | DOI | MR | Zbl
[6] L. N. Krivonosov, V. A. Luk'yanov, “Connection of Yang–Mills equations with Einstein and Maxwell's equations”, Zh. Sib. Federal. Uni. Ser. Mat. i Fiz., 2:4 (2009), 432–448 (in Russian)
[7] V. A. Luk'yanov, “The Yang–Mills equations on four-dimensional manifolds of conformal connection”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 3, 67–72 (in Russian)
[8] G. F. Laptev, “Differential geometry of immersed manifolds. The group-theoretic method of differential-geometric researches”, Trudy Moskov. Mat. Obshch., 2, 1953, 275–382 (in Russian) | Zbl
[9] M. A. Akivis, V. V. Konnov, “Some local aspects of the theory of conformal structure”, Uspekhi Mat. Nauk, 48:1 (1993), 1–35 | MR | Zbl
[10] M. M. Postnikov, Differential Geometry, Nauka, M., 1988 (in Russian)
[11] A. V. Stolyarov, “Intrinsic geometry of a normed conformal space”, Izv. Vyssh. Uchebn. Zaved. Mat., 46:11 (2002), 57–65 | MR | Zbl
[12] A. V. Stolyarov, “A space with conformal connection”, Izv. Vyssh. Uchebn. Zaved. Mat., 50:11 (2006), 40–51 | MR