On the unique determination of three-connected plane domain by the relative conformal moduli of the boundary components
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 2, pp. 13-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the boundary values of conformal mappings of plane finitely-connected domains. We present a complete exposition of a theorem giving an exhaustive description of the boundary values of such mappings in terms of the conformal moduli (extremal lengths) of the pairs of boundary components of the domain under consideration in the case where its connectedness is at most $3$.
Keywords: finitely-connected plane domain, relative conformal modulus of a pair of boundary components of the domain, Teichmüller and Grötzsch extremal domains.
@article{VNGU_2017_17_2_a1,
     author = {A. P. Kopylov},
     title = {On the unique determination of three-connected plane domain by the relative conformal moduli of the boundary components},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {13--20},
     year = {2017},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a1/}
}
TY  - JOUR
AU  - A. P. Kopylov
TI  - On the unique determination of three-connected plane domain by the relative conformal moduli of the boundary components
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 13
EP  - 20
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a1/
LA  - ru
ID  - VNGU_2017_17_2_a1
ER  - 
%0 Journal Article
%A A. P. Kopylov
%T On the unique determination of three-connected plane domain by the relative conformal moduli of the boundary components
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 13-20
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a1/
%G ru
%F VNGU_2017_17_2_a1
A. P. Kopylov. On the unique determination of three-connected plane domain by the relative conformal moduli of the boundary components. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 2, pp. 13-20. http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a1/

[1] A. P. Kopylov, “Unique determination of convex polyhedral domains by relative conformal moduli of boundary condensers”, Dokl. Math., 74:2 (2006), 637–639 | DOI | MR | Zbl

[2] A. P. Kopylov, “On unique determination of domains in Euclidean spaces”, J. Math. Sci., 153:6 (2008), 869–898 | DOI | MR | Zbl

[3] Kopylov A. P., “Unique Determination of Domains”, Differential Geometry and Its Applications, World Sci. Publ., Hackensack, NJ, 2008, 157–169 | DOI | MR | Zbl

[4] A. P. Kopylov, “Uniqueness of polyhedral domains and $p$-moduli of path families”, Dokl. Math., 83:3 (2011), 321–323 | DOI | MR | Zbl

[5] A. P. Kopylov, “Erratum to: `Uniqueness of polyhedral domains and $p$-moduli of path families”, Dokl. Math., 84:2 (2011), 765 | DOI | MR

[6] A. P. Kopylov, “Unique determination of polyhedral domains and $p$-moduli of path families”, Mathematics, Modern Problems of Mathematics and Mechanics, VI, no. 3, Moscow State University, M., 2011, 25–41 (in Russian)

[7] Kopylov A. P., Unique Determination of Polyhedral Domains in $\mathbb{R}^n$ ($n\geq 4$) and $p$-Moduli of Path Families, 26 May 2014, arXiv: 1402.4273v3 [math.MG] | MR

[8] Fuglede B., “Extremal Length and Functional Completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl

[9] Väisälä J., Lectures on $n$-Dimensional Quasiconformal Mappings, Springer-Verlag, Berlin–Heidelberg–N. Y., 1973

[10] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, AMS, Providence, RI, 1969 | MR | Zbl

[11] Teichmüller O., “Untersuchungen über Konforme und Quasikonforme Abbildung”, Deutsche Math., 3 (1938), 621–678

[12] Gehring F. W., “Symmetrization of Rings in Space”, Trans. Amer. Math. Soc., 101 (1961), 499–519 | DOI | MR | Zbl

[13] Gehring F. W., Väisälä J., “The Coefficients of Quasiconformality of Domains in Space”, Acta Mathematica, 114:1–2 (1965), 1–70 | DOI | MR | Zbl

[14] A. P. Kopylov, “On unique determination of 3-connected plane domains by relative conformal moduli of pairs of boundary components”, Dokl. Math., 93:3 (2016), 262–263 | DOI | DOI | MR | Zbl