Stationary electrohydrodynamic flows of incompressible polymeric media with strong discontinuity
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 2, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study dynamics of an incompressible polymeric fluid with volume charge. We find steady-state solutions of the electrohydrodynamical equations with interface $S$.
Keywords: incompressible polymeric fluid, electrohydrodynamical equations, steady-state solutions.
Mots-clés : interface $S$
@article{VNGU_2017_17_2_a0,
     author = {A. M. Blokhin and R. E. Semenko},
     title = {Stationary electrohydrodynamic flows of incompressible polymeric media with strong discontinuity},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--12},
     year = {2017},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a0/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - R. E. Semenko
TI  - Stationary electrohydrodynamic flows of incompressible polymeric media with strong discontinuity
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 3
EP  - 12
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a0/
LA  - ru
ID  - VNGU_2017_17_2_a0
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A R. E. Semenko
%T Stationary electrohydrodynamic flows of incompressible polymeric media with strong discontinuity
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 3-12
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a0/
%G ru
%F VNGU_2017_17_2_a0
A. M. Blokhin; R. E. Semenko. Stationary electrohydrodynamic flows of incompressible polymeric media with strong discontinuity. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 2, pp. 3-12. http://geodesic.mathdoc.fr/item/VNGU_2017_17_2_a0/

[1] A. M. Blokhin, A. S. Rudometova, “Stationary solutions for equations describing non-isothermal electroconvection of incompressible viscoelastic polymeric fluid”, Sib. Zh. Ind. Mat., 18:1(61) (2015), 3–13 (in Russian)

[2] Yu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, Introduction into Mesoscopic Theory of Fluidity of Polymeric Systems, AltGPA, Barnaul, 2012 (in Russian)

[3] A. N. Mordvinov, B. L. Smorodin, “Electroconvection under injection from cathode and heating from above”, JETP, 114:5 (2012), 870–877 | DOI

[4] A. V. Taraut, B. L. Smorodin, “Electroconvection in the presence of autonomous unipolar injection and residual conductivity”, JETP, 115:2 (2012), 361–369 | DOI

[5] B. L. Smorodin, A. V. Taraut, “Dynamics of electroconvective wave flows in a modulated electric field”, JETP, 118:1 (2014), 158–165 | DOI | DOI

[6] A. I. Zhakin, “Electrohydrodynamics”, Phys. Usp., 55 (2012), 465–488 | DOI | DOI

[7] A. I. Zhakin, “Electrohydrodynamics of charged surfaces”, Phys. Usp., 56 (2013), 141–163 | DOI | DOI

[8] L. I. Sedov, Mechanics of Continuous Media, 4$^{\text{th}}$ ed., World Scientific Publishing, Singapore, 1997 | MR | Zbl

[9] A. M. Blokhin, N. V. Bambaeva, “Stationary solutions for equations of incompressible viscoelastic polymeric fluid”, Comput. Math. and Math. Phys., 54:5 (2014), 109–134 (in Russian)

[10] L. V. Ovsyannikov, Lectures on Principles of Gas Dynamics, Nauka, M., 1981 (in Russian)

[11] Blokhin A. M., “Strong Discontinuities for the 2-D MEP Hydrodynamical Model of Charge Transport in Semiconductors”, Quarterly of Appl. Math., LXVI:2 (2008), 359–377 | DOI | MR | Zbl

[12] V. V. Gogosov, V. A. Polyansky, “Electrohydrodynamics: problems and applications, basic equations, discontinuous solutions”, Itogi nauki i tekhniki, 10 (1976), 80 (in Russian)