One parameter families of positive solutions of some classes of convolution type nonlinear integral equations
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 1, pp. 91-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a class of nonlinear integral equations of convolution type on the half line and on the whole line with noncompact Hammerstein operator. Under certain restrictions on the nonlinearity we prove the existence of one-parameter family of positive solutions and study the asymptotic behaviour of the solutions at infinity. To illustrate the results, we give some specific examples of the equations.
Keywords: monotonicity, iterations, one-parameter family of positive solutions, Caratheodory condition, set of parameters.
@article{VNGU_2017_17_1_a7,
     author = {Kh. A. Khachatryan and H. S. Petrosyan},
     title = {One parameter families of positive solutions of some classes of convolution type nonlinear integral equations},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {91--108},
     year = {2017},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a7/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
TI  - One parameter families of positive solutions of some classes of convolution type nonlinear integral equations
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 91
EP  - 108
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a7/
LA  - ru
ID  - VNGU_2017_17_1_a7
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%T One parameter families of positive solutions of some classes of convolution type nonlinear integral equations
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 91-108
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a7/
%G ru
%F VNGU_2017_17_1_a7
Kh. A. Khachatryan; H. S. Petrosyan. One parameter families of positive solutions of some classes of convolution type nonlinear integral equations. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 1, pp. 91-108. http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a7/

[1] Benes V. E., “A Nonlinear Integral Equation from the Theory of Servo-Mechanicms”, J. Bell. System Techn., 40:5 (1961), 1309–1321 | DOI | MR

[2] Benes V. E., “A Nonlinear Integral Equations in the Marcinkiewicz Space $M_2$”, J. of Math. Phys., 44:1 (1965), 24–35 | DOI | MR | Zbl

[3] Diekman O., Karper H. G., “On the Bounded Solutions of Nonlinear Convolution Equation”, Nonlinear Analysis, Theory Methods and Appl., 2:6 (1978), 721–737 | DOI | MR | Zbl

[4] Diekman O., “Thresholds and Travelling Waves for the Geographical Spread of Infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR | Zbl

[5] N. B. Engibaryan, “On a problem in nonlinear radiative transfer”, Astrophysics, 2:1 (1966), 12–14 | DOI | MR

[6] M. N. Kogan, Rarefied Gas Dynamics, Plenum Press, New York, 1969

[7] A. Kh. Khachatryan, Kh. A. Khachatryan, “Qualitative difference between solutions for a model of the Boltzmann equation in the linear and nonlinear cases”, Theoretical and Math. Phys., 172:3 (2012), 1315–1320 | DOI | DOI | MR | Zbl

[8] P. Urysohn, “On one class of nonlinear integral equations”, Mat. Sbornik, 31:2 (1923), 236–255 (in Russian) | Zbl

[9] Hammerstein A., “Nichtlineare Integralgleichungen Nebst Anwendungen”, Acta. Math., 54:1 (1930), 117–176 | DOI | MR | Zbl

[10] M. A. Krasnosel'skii, L. A. Ladyzhenskii, “Conditions for complete continuity of P. S. Uryson's operator acting in the space $L^p$”, Tr. Mosk. Mat. Obs., 3, GITTL, M., 1954, 307–320 (in Russian) | Zbl

[11] M. A. Krasnosel'skii, Ya. B. Rutitskii, “Orlicz spaces and non-linear integral equations”, Tr. Mosk. Mat. Obs., 7, GITTL, M., 1958, 63–120 (in Russian) | Zbl

[12] Browder F. E., “Strongly Nonlinear Integral Equations of Hammerstein Type”, Proc. Nat. Acad. Sci. USA, 72:5 (1975), 1937–1939 | DOI | MR | Zbl

[13] Brezis H., Browder F. E., “Existence Theorems for Nonlinear Integral Equations of Hammerstein Type”, Bull. Amer. Math. Soc., 81:1 (1975), 73–78 | DOI | MR | Zbl

[14] P. P. Zabreiko, E. I. Pustyl'nik, “On continuity and complete continuity of nonlinear integral operators in $L_p$ spaces”, Uspekhi Mat. Nauk, 19:2 (1964), 204–205 (in Russian)

[15] P. P. Zabreiko, M. A. Krasnosel'skii, “Solvability of nonlinear operator equations”, Funct. Anal. Appl., 5:3 (1971), 206–208 | DOI | Zbl

[16] V. Ya. Stetsenko, A. R. Esayan, “Theorems on positive solutions of equations of the second kind with nonlinear operators”, Mat. Sbornik, 68(110):4 (1965), 473–486 (in Russian) | Zbl

[17] Banas J., “Integhrable Solutions of Hammerstein and Urysohn Integral Equations”, J. Austral. Math. Soc. (A), 46 (1989), 61–68 | DOI | MR | Zbl

[18] M. A. Krasnosel'skii, Positive Solutions of Operator Equations, P. Noordhoff Ltd., Groningen, 1964 | MR

[19] L. G. Arabadzhyan, “Existence of nontrivial solutions of certain linear and nonlinear convolution-type equations”, Ukr. Math. J., 41:12 (1989), 1359–1367 | DOI | MR | Zbl

[20] L. G. Arabadzhyan, “Solutions of an integral equation of Hammerstein type”, J. Contemp. Math. Anal., 32:1 (1997), 17–24 | MR | Zbl

[21] Kh. A. Khachatryan, “On a class of nonlinear integral equations with a noncompact operator”, J. Contemp. Math. Anal., 46:2 (2011), 89–100 | DOI | MR | Zbl

[22] Kh. A. Khachatryan, “Some classes of Urysohn's nonlinear integral equations on the semi-axis”, Dokl. Nat. Acad. Sci. Belarus, 55:1 (2011), 5–9 (in Russian)

[23] Kh. A. Khachatryan, “On a class of integral equations of Urysohn type with strong non-linearity”, Izv. Math., 76:1 (2012), 163–189 | DOI | DOI | MR | Zbl

[24] Kh. A. Khachatryan, “Positive solubility of some classes of non-linear integral equations of Hammerstein type on the semi-axis and on the whole line”, Izv. Math., 79:2 (2015), 411–430 | DOI | DOI | MR | Zbl

[25] L. G. Arabadzhyan, N. B. Engibaryan, “Convolution equations and nonlinear functional equations”, J. Sov. Math., 36:6 (1987), 745–791 | DOI | Zbl

[26] L. G. Arabadzhyan, A. S. Khachatryan, “A class of integral equations of convolution type”, Sb. Math., 198:7 (2007), 949–966 | DOI | DOI | MR | Zbl

[27] G. G. Gevorkyan, N. B. Engibaryan, “New theorems for the integral renewal equation”, J. Contemp. Math. Anal., 32:1 (1997), 2–16 | MR | Zbl

[28] W. Rudin, Functional analysis, McGraw-Hill, 1973 | MR | Zbl

[29] Yengibaryan N. B., “Renewal Equation on the Whole Line”, Stochastic Process. Appl., 85:2 (2000), 237–247 | DOI | MR

[30] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover Publications, 1999 | MR

[31] N. B. Engibarjan, A. A. Arutjunjan, “Integral equations on the half-line with difference kernels, and nonlinear functional equations”, Math. USSR Sb., 26:1 (1975), 31–54 | DOI | MR | Zbl