On properties of the operator generated by the derivative of the acoustic potential of a simple layer
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 1, pp. 78-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the existence of the derivative of the acoustic potential of a simple layer and study some properties of the operator generated by the derivative of the acoustic potential of a simple layer in the generalized Holder spaces.
Keywords: surface Lyapunov, derivative of the potential of a simple layer, the surface singular integral, generalized space Holder.
@article{VNGU_2017_17_1_a6,
     author = {E. H. Khalilov},
     title = {On properties of the operator generated by the derivative of the acoustic potential of a simple layer},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {78--90},
     year = {2017},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a6/}
}
TY  - JOUR
AU  - E. H. Khalilov
TI  - On properties of the operator generated by the derivative of the acoustic potential of a simple layer
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 78
EP  - 90
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a6/
LA  - ru
ID  - VNGU_2017_17_1_a6
ER  - 
%0 Journal Article
%A E. H. Khalilov
%T On properties of the operator generated by the derivative of the acoustic potential of a simple layer
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 78-90
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a6/
%G ru
%F VNGU_2017_17_1_a6
E. H. Khalilov. On properties of the operator generated by the derivative of the acoustic potential of a simple layer. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 1, pp. 78-90. http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a6/

[1] D. L. Colton, R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New York, 1983 | MR | Zbl

[2] N. M. Gyunter, Potential Theory and Its Applications to Basic Problems of Mathematical Physics, Frederick Ungar Publishing, New York, 1967

[3] E. H. Khalilov, “Some properties of the operators generated by a derivative of the acoustic double layer potential”, Sib. Math. J., 55:3 (2014), 564–573 | DOI | MR | Zbl

[4] Khalilov E. H., “On Approximate Solution of External Dirichlet Boundary Value Problem for Laplace Equation by Collocation Method”, Azerbaijan J. of Mathematics, 5:2 (2015), 13–20 | MR | Zbl

[5] E. H. Khalilov, “On an approximate solution of a class of boundary integral equations of the first kind”, Differ. Equ., 52:9 (2016), 1234–1240 | DOI | DOI | MR | Zbl

[6] V. S. Vladimirov, Equations of Mathematical Physics, Mir Publishers, M., 1983

[7] E. H. Khalilov, “Justification of the collocation method for the integral equation for a mixed boundary value problem for the Helmholtz equation”, Comput. Math. and Math. Phys., 56:7 (2016), 1310–1318 | DOI | DOI | MR | Zbl

[8] A. I. Guseinov, Kh. Sh. Mukhtarov, Introduction to the Theory of Nonlinear Singular Integral Equations, Nauka, M., 1980 (in Russian)