@article{VNGU_2017_17_1_a6,
author = {E. H. Khalilov},
title = {On properties of the operator generated by the derivative of the acoustic potential of a simple layer},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {78--90},
year = {2017},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a6/}
}
TY - JOUR AU - E. H. Khalilov TI - On properties of the operator generated by the derivative of the acoustic potential of a simple layer JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2017 SP - 78 EP - 90 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a6/ LA - ru ID - VNGU_2017_17_1_a6 ER -
%0 Journal Article %A E. H. Khalilov %T On properties of the operator generated by the derivative of the acoustic potential of a simple layer %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2017 %P 78-90 %V 17 %N 1 %U http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a6/ %G ru %F VNGU_2017_17_1_a6
E. H. Khalilov. On properties of the operator generated by the derivative of the acoustic potential of a simple layer. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 1, pp. 78-90. http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a6/
[1] D. L. Colton, R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New York, 1983 | MR | Zbl
[2] N. M. Gyunter, Potential Theory and Its Applications to Basic Problems of Mathematical Physics, Frederick Ungar Publishing, New York, 1967
[3] E. H. Khalilov, “Some properties of the operators generated by a derivative of the acoustic double layer potential”, Sib. Math. J., 55:3 (2014), 564–573 | DOI | MR | Zbl
[4] Khalilov E. H., “On Approximate Solution of External Dirichlet Boundary Value Problem for Laplace Equation by Collocation Method”, Azerbaijan J. of Mathematics, 5:2 (2015), 13–20 | MR | Zbl
[5] E. H. Khalilov, “On an approximate solution of a class of boundary integral equations of the first kind”, Differ. Equ., 52:9 (2016), 1234–1240 | DOI | DOI | MR | Zbl
[6] V. S. Vladimirov, Equations of Mathematical Physics, Mir Publishers, M., 1983
[7] E. H. Khalilov, “Justification of the collocation method for the integral equation for a mixed boundary value problem for the Helmholtz equation”, Comput. Math. and Math. Phys., 56:7 (2016), 1310–1318 | DOI | DOI | MR | Zbl
[8] A. I. Guseinov, Kh. Sh. Mukhtarov, Introduction to the Theory of Nonlinear Singular Integral Equations, Nauka, M., 1980 (in Russian)