Exact asymptotics of the solution to a difference equation of general type
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 1, pp. 45-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An asymptotic expansion for the solution to a nonhomogeneous difference equation of general type is obtained. The influence of the roots of the characteristic equation is taken into account. The asymptotic behavior of the remainder is established, depending on the asymptotics of the nonhomogeneous term of the equation.
Keywords: numbering, Rogers semilattice, hyperarithmetical hierarchy, minimal elements, minimal covers.
@article{VNGU_2017_17_1_a3,
     author = {M. S. Sgibnev},
     title = {Exact asymptotics of the solution to a difference equation of general type},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {45--54},
     year = {2017},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a3/}
}
TY  - JOUR
AU  - M. S. Sgibnev
TI  - Exact asymptotics of the solution to a difference equation of general type
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 45
EP  - 54
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a3/
LA  - ru
ID  - VNGU_2017_17_1_a3
ER  - 
%0 Journal Article
%A M. S. Sgibnev
%T Exact asymptotics of the solution to a difference equation of general type
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 45-54
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a3/
%G ru
%F VNGU_2017_17_1_a3
M. S. Sgibnev. Exact asymptotics of the solution to a difference equation of general type. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a3/

[1] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York–Heidelberg–Berlin, 1977

[2] M. S.Sgibnev, “Behavior at infinity of a solution to a differential-difference equation”, Sib. Math. J., 53:6 (2012), 1139–1154 | DOI | MR | Zbl

[3] M. S. Sgibnev, “Behavior at infinity of a solution to a matrix differential-difference equation”, Sib. Math. J., 55:3 (2014), 530–543 | DOI | MR | Zbl

[4] E. Hille, R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc., Providence, 1957 | MR | Zbl

[5] W. Feller, An Introduction to Probability Theory and its Applications, v. 2, John Wiley and Sons, Inc., New York etc., 1966 | MR | Zbl

[6] A. I. Markushevich, The Theory of Analytic Function, v. 1, Nauka, M., 1967 (in Russian)