On the stationary distribution of a stochastic process
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 1, pp. 36-44
Voir la notice de l'article provenant de la source Math-Net.Ru
We find a stationary distribution of a stochastic process with delay at the origin. The trajectories
of the process have linear growth and random jumps at random times. We use known results for
regenerative processes and factorization technique for the study in boundary crossing problems for
random walks.
Keywords:
regenerative process, stationary distribution, factorization method.
@article{VNGU_2017_17_1_a2,
author = {V. I. Lotov and E. M. Okhapkina},
title = {On the stationary distribution of a stochastic process},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {36--44},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a2/}
}
TY - JOUR AU - V. I. Lotov AU - E. M. Okhapkina TI - On the stationary distribution of a stochastic process JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2017 SP - 36 EP - 44 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a2/ LA - ru ID - VNGU_2017_17_1_a2 ER -
V. I. Lotov; E. M. Okhapkina. On the stationary distribution of a stochastic process. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 1, pp. 36-44. http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a2/