On the stationary distribution of a stochastic process
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 1, pp. 36-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find a stationary distribution of a stochastic process with delay at the origin. The trajectories of the process have linear growth and random jumps at random times. We use known results for regenerative processes and factorization technique for the study in boundary crossing problems for random walks.
Keywords: regenerative process, stationary distribution, factorization method.
@article{VNGU_2017_17_1_a2,
     author = {V. I. Lotov and E. M. Okhapkina},
     title = {On the stationary distribution of a stochastic process},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {36--44},
     year = {2017},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a2/}
}
TY  - JOUR
AU  - V. I. Lotov
AU  - E. M. Okhapkina
TI  - On the stationary distribution of a stochastic process
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 36
EP  - 44
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a2/
LA  - ru
ID  - VNGU_2017_17_1_a2
ER  - 
%0 Journal Article
%A V. I. Lotov
%A E. M. Okhapkina
%T On the stationary distribution of a stochastic process
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 36-44
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a2/
%G ru
%F VNGU_2017_17_1_a2
V. I. Lotov; E. M. Okhapkina. On the stationary distribution of a stochastic process. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 1, pp. 36-44. http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a2/

[1] Nasirova T. I., Ibayev E. A., Aliyeva T. A., “The Laplace Transform of the Ergodic Distribution of the Process Semi-Markovian Random Walk with Negative Drift, Nonnegative Jumps, Delays and Delaying Screen at Zero”, Theory of Stochastic Processes, 15(31):1 (2009), 49–60 | MR | Zbl

[2] Yapar J., Maden S., Karimova U., “Laplace Transform of the Distribution of the Semi-Markov Walk Process with a Positive Drift, Negative Jumps, and a Delay Screen at Zero”, Automatic Control and Computer Sciences, 47:1 (2013), 22–27 | DOI

[3] A. A. Borovkov, Probability Theory, Springer-Verlag, London, 2013 | MR | Zbl

[4] W. Feller, An Introduction to Probability Theory and its Applications, v. 2, Willey, N. Y., 1971 | MR | Zbl

[5] V. I. Lotov, “On an approach in two-sided boundary crossing problems”, Statistika i Upravlenie Sluchainymi Processami, Nauka, M., 1989, 117–121 (in Russian)

[6] A. A. Borovkov, Stochastic Processes in Queueing Theory, Springer, New York, 1976 | MR | Zbl