On the stationary distribution of a stochastic process
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 1, pp. 36-44

Voir la notice de l'article provenant de la source Math-Net.Ru

We find a stationary distribution of a stochastic process with delay at the origin. The trajectories of the process have linear growth and random jumps at random times. We use known results for regenerative processes and factorization technique for the study in boundary crossing problems for random walks.
Keywords: regenerative process, stationary distribution, factorization method.
@article{VNGU_2017_17_1_a2,
     author = {V. I. Lotov and E. M. Okhapkina},
     title = {On the stationary distribution of a stochastic process},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {36--44},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a2/}
}
TY  - JOUR
AU  - V. I. Lotov
AU  - E. M. Okhapkina
TI  - On the stationary distribution of a stochastic process
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 36
EP  - 44
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a2/
LA  - ru
ID  - VNGU_2017_17_1_a2
ER  - 
%0 Journal Article
%A V. I. Lotov
%A E. M. Okhapkina
%T On the stationary distribution of a stochastic process
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 36-44
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a2/
%G ru
%F VNGU_2017_17_1_a2
V. I. Lotov; E. M. Okhapkina. On the stationary distribution of a stochastic process. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 1, pp. 36-44. http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a2/