Exact solutions of precursor film equation
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 1, pp. 17-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the study and analysis of exact solutions of equations with logarithmic nonlinearity which occurs in variety of physical applications and also in differential geometry. To construct the solutions, the invariant manifolds approach and the Lagrangean coordinates approach are used along with classical approaches of group analysis.
Keywords: precursor film, group analysis, invariant manifolds
Mots-clés : Lagrangean coordinates.
@article{VNGU_2017_17_1_a1,
     author = {V. B. Bazarova and V. V. Pukhnachev},
     title = {Exact solutions of precursor film equation},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {17--35},
     year = {2017},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a1/}
}
TY  - JOUR
AU  - V. B. Bazarova
AU  - V. V. Pukhnachev
TI  - Exact solutions of precursor film equation
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2017
SP  - 17
EP  - 35
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a1/
LA  - ru
ID  - VNGU_2017_17_1_a1
ER  - 
%0 Journal Article
%A V. B. Bazarova
%A V. V. Pukhnachev
%T Exact solutions of precursor film equation
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2017
%P 17-35
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a1/
%G ru
%F VNGU_2017_17_1_a1
V. B. Bazarova; V. V. Pukhnachev. Exact solutions of precursor film equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 17 (2017) no. 1, pp. 17-35. http://geodesic.mathdoc.fr/item/VNGU_2017_17_1_a1/

[1] O. V. Voinov, “Dynamic theory of wetting of solid body with viscous fluid under van der Waals forces”, J. Appl. Mech. Tech. Phys., 35:6 (1994), 69–85 (in Russian) | Zbl

[2] P. G. de Gennes, “Wetting: statics and dynamics”, UFN, 151:4 (1987), 619–681 (in Russian) | DOI

[3] Bertozzi A. L., “The Mathematics of Moving Contact Lines in Thin Liquid Films”, Notices Amer. Math. Soc., 45:6 (1998), 689–697 | MR | Zbl

[4] Vazquez J. L., The Porous Medium Equation: Mathematical Theory, Oxford Mathematical Monographs, 2006 | MR

[5] Hsu S. Y., “Removable Singularities and Non-Uniqueness of Solutions of a Singular Diffusion Equation”, Math. Annalen, 325 (2003), 665–693 | DOI | MR | Zbl

[6] Carleman T., Problèms Mathématiques dans la Théorie Cinétique des Gaz, Almquists-Wiksells, Uppsala, 1957 | MR

[7] Lonngren K. E., Hirose A., “Expansion of an Electron Cloud”, Phys. Lett. A, 59 (1976), 285–286 | DOI

[8] Giga Y., Goto S., “Motion of Hypersurfaces and Geometric Equations”, J. Math. Soc. Japan, 44 (1992), 99–111 | DOI | MR

[9] Lang-Fang Wu, “A New Result for the Porous Medium Equation Derived from the Ricci Flow”, Bull. Amer. Math. Soc. (N.S.), 28 (1993), 90–94 | DOI | MR | Zbl

[10] Nariboli G. A., “Self-Similar Solutions of Some Nonlinear Equations”, Appl. Sci. Research, 22:1 (1969), 449–461 | DOI | MR

[11] King J. R., “Local Transformations Between Some Nonlinear Diffusion Equations”, J. Austral. Math. Soc. Ser. B, 33 (1992), 321–349 | DOI | MR | Zbl

[12] E. I. Semenov, “Properties of fast diffusion equation and its multidimensional exact solutions”, Sib. Mat. Zh., 44:4 (2003), 862–869 (in Russian) | Zbl

[13] S. N. Aristov, “Periodic and local exact solutions of equation $h_t= (\ln h)_{xx}$”, Prikl. Mekh. Tekhn. Fiz., 40:1 (1999), 22–26 (in Russian) | Zbl

[14] V. A. Dorodnitsyn, S. R. Svirshchevskii, I. V. Knyazeva, “Group properties of heat equation with source in two-dimensional and three-dimensional cases”, Differ. Uravn., 19 (1983), 1215–1223 (in Russian) | Zbl

[15] Crowdy D. G., “General Solutions to the the 2D Liouville Equation”, Int. J. Engin. Sci., 35:2 (1997), 141–149 | DOI | MR | Zbl

[16] Kaptsov O. V., Verevkin I. V., “Differential Constraints and Exact Solutions of Nonlinear Diffusion Equations”, J. Phys. A: Math. Gen., 36:5 (2003), 1–14 | DOI | MR

[17] Galaktionov V. A., Svirshchevskii S. R., Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mathematics and Physics, Chapman Hall/CRC, L., 2007 | MR

[18] Galaktionov V. A., “Invariant Subspaces and New Explicit Solutions to Evolution Equations with Quadratic Nonlinearities”, Proc. Roy. Soc. Edinburgh, 125A (1995), 225–246 | DOI | MR | Zbl

[19] V. V. Pukhnachev, “Multidimensional exact solutions of nonlinear diffusion equation”, Prikl. Mekh. Tekhn. Fiz., 36:2 (1995), 23–31 (in Russian) | Zbl

[20] V. V. Pukhnachev, “Equivalency transformations and hidden symmetry of evolutionary equations”, Dokl. AN SSSR, 294:3 (1987), 535–538 (in Russian) | Zbl

[21] Meirmanov A. M., Pukhnachev V. V., Shmarev S. I., Evolution Equations and Lagrangian Coordinates, De Gruyter Expositions in Mathematics, Berlin–New York, 1997 | MR

[22] A. M. Meirmanov, V. V. Pukhnachev, S. I. Shmarev, “Lagrangean coordinates in Stefan problem”, Dinamika Sploshnoi Sredy, 47 (1980), 90–111 (in Russian) | Zbl

[23] A. M. Meirmanov, Stefan Problem, Nauka, Novosibirsk, 1986 (in Russian)