$n$-Algebraic complete algebras, pseudodirect product and operator of algebraic closure on the subsets of universal algebras
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 97-102
Cet article a éte moissonné depuis la source Math-Net.Ru
It is given the definitions of an $n$-algebraic complete algebra and an $n$-algebraic completeness of the algebra which makes it possible to find algebraic closures of subsets of universal algebras. It is given the connection of the $n$-complitness of algebra with the operation of pseudodirect product of algebras.
Keywords:
algebraic set of universal algebra, $n$-algebraic completeness of algebra
Mots-clés : pseudodirect product of algebras.
Mots-clés : pseudodirect product of algebras.
@article{VNGU_2016_16_4_a8,
author = {A. G. Pinus},
title = {$n${-Algebraic} complete algebras, pseudodirect product and operator of algebraic closure on the subsets of universal algebras},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {97--102},
year = {2016},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a8/}
}
TY - JOUR AU - A. G. Pinus TI - $n$-Algebraic complete algebras, pseudodirect product and operator of algebraic closure on the subsets of universal algebras JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2016 SP - 97 EP - 102 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a8/ LA - ru ID - VNGU_2016_16_4_a8 ER -
%0 Journal Article %A A. G. Pinus %T $n$-Algebraic complete algebras, pseudodirect product and operator of algebraic closure on the subsets of universal algebras %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2016 %P 97-102 %V 16 %N 4 %U http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a8/ %G ru %F VNGU_2016_16_4_a8
A. G. Pinus. $n$-Algebraic complete algebras, pseudodirect product and operator of algebraic closure on the subsets of universal algebras. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 97-102. http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a8/
[1] B. I. Plotkin, “Some concepts of algebraic geometry in universal algebra”, Algebra i Analiz, 9:4 (1997), 224–248 (in Russian)
[2] Daniyarova E., Myasnicov A., Remeslennikov V., “Unification Theorems in Algebraic Geometry”, Algebra Discrete Math., 1 (2001), 80–102
[3] A. G. Pinus, “On the quasiorder induced by inner homomorphisms and the operator of algebraic closure”, Sib. Math. J., 56:3 (2015), 499–504 | DOI
[4] Dickman M. A., “Larger Infinitary Languages”, Model-Theoretic Logics, Springer-Verlag, N. Y., 1985, 317–363
[5] A. G. Pinus, “Ihm-quasyorder and derived structures of universal algebras; 1-algebraic complete algebras”, Proc. of Irkutsk Univ., 12:1 (2015), 72–78 (in Russian)