A priori tame estimates for free boundary plasma–vacuum problem
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 72-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the free boundary problem for the plasma–vacuum interface in ideal compressible magnetohydrodynamics. Unlike the classical statement, when the vacuum magnetic field obeys the ${\rm div}$-${\rm rot}$ system of pre-Maxwell dynamics, we do not neglect the displacement current in the vacuum region and consider the Maxwell equations for electric and magnetic fields. This work is a continuation of the previous analysis by Mandrik and Trakhinin in 2014, where a sufficient condition on the vacuum electric field that precludes violent instabilities was found and analyzed, the well-posedness of the linearized problem in anisotropic weighted Sobolev spaces was proved under the assumption that this condition is satisfied at each point of the unperturbed nonplanar plasma-vacuum interface. Since the free boundary is characteristic, the functional setting is provide by weighted anisotropic Sobolev spaces $H^s_*$. The fact that the Kreiss–Lopatinski condition is satisfied only in a weak sense yields losses of derivaties in a priori estimates. Assuming that the mentioned above condition is satisfied at each point of the unperturbed nonplanar plasma-vacuum interface, we prove that tame estimates in $H^s_*$ holds for the linearized problem. In future we are going to use those estimates to prove the existence of solutions of the nonlinear problem.
Keywords: tame estimates, ideal compressible magnetohydrodynamics, vacuum Maxwell equations, plasma-vacuum interface.
@article{VNGU_2016_16_4_a7,
     author = {N. V. Mandrik},
     title = {A priori tame estimates for free boundary plasma{\textendash}vacuum problem},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {72--96},
     year = {2016},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a7/}
}
TY  - JOUR
AU  - N. V. Mandrik
TI  - A priori tame estimates for free boundary plasma–vacuum problem
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 72
EP  - 96
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a7/
LA  - ru
ID  - VNGU_2016_16_4_a7
ER  - 
%0 Journal Article
%A N. V. Mandrik
%T A priori tame estimates for free boundary plasma–vacuum problem
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 72-96
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a7/
%G ru
%F VNGU_2016_16_4_a7
N. V. Mandrik. A priori tame estimates for free boundary plasma–vacuum problem. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 72-96. http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a7/

[1] Mandrik N., Trakhinin Y., “Influence of Vacuum Electric Field on the Stability of a Plasma-Vacuum Interface”, Communications in Mathematical Sciences, 12:6 (2014), 1065–1100 | DOI

[2] Trakhinin Y., “Stability of Relativistic Plasma-Vacuum Interfaces”, J. Hyperbolic Differ. Equ., 9 (2012), 469–509 | DOI

[3] Bernstein I. B., Frieman E. A., Kruskal M. D., Kulsrud R. M., “An Energy Principle for Hydromagnetic Stability Problems”, Proc. Roy. Soc. A, 244 (1958), 17–40 | DOI

[4] Goedbloed J. P., Keppens R., Poedts S., Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas, Cambridge University Press, Cambridge, 2010

[5] Trakhinin Y., “On the Well-Posedness of a Linearized Plasma-Vacuum Interface Problem in Ideal Compressible MHD”, Differ. Equ., 249 (2010), 2577–2599 | DOI

[6] Secchi P., Trakhinin Y., “Well-Posedness of the Linearized Plasma-Vacuum Interface Problem”, Interfaces and Free Boundaries, 15:3 (2013), 323–357 | DOI

[7] Lindblad H., “Well Posedness for the Motion of a Compressible Liquid with Free Surface Boundary”, Commun. Math. Phys., 260 (2005), 319–392 | DOI

[8] Trakhinin Y., “Local Existence for the Free Boundary Problem for Nonrelativistic and Relativistic Compressible Euler Equations with a Vacuum Boundary Condition”, Commun. Pure Appl. Math., 62 (2009), 1551–1594 | DOI

[9] Morando A., Trakhinin Y., Trebeschi P., “Well-Posedness of the Linearized Plasma-Vacuum Interface Problem in Ideal Incompressible MHD”, Quart. Appl. Math., 72:3 (2014), 549–587 | DOI

[10] Secchi P., Trakhinin Y., “Well-Posedness of the Plasma-Vacuum Interface Problem”, Nonlinearity, 27 (2014), 105–169 | DOI

[11] Trakhinin Y., “The Existence of Current-Vortex Sheets in Ideal Compressible Magnetohydrodynamics”, Arch. Ration. Mech. Anal., 191 (2009), 245–310 | DOI

[12] Chen Shuxing, “On the Initial-Boundary Value Problems for Quasilinear Symmetric Hyperbolic System with Characteristic Boundary”, Chinese Ann. Math., 3 (1982), 223–232

[13] Morando A., Secchi P., Trebeschi P., “Regularity of Solutions to Characteristic Initial-Boundary Value Problems for Symmetrizable Systems”, J. Hyperbolic Differ. Equ., 6 (2009), 753–808 | DOI

[14] Secchi P., “Some Properties of Anisotropic Sobolev Spaces”, Arch. Math., 75 (2000), 207–216 | DOI

[15] Yanagisawa T., Matsumura A., “The Fixed Boundary Value Problems for the Equations of Ideal Magnetohydrodynamics with a Perfectly Conducting Wall Condition”, Commun. Math. Phys., 136 (1991), 119–140 | DOI

[16] Kreiss H.-O., “Initial Boundary Value Problems for Hyperbolic Systems”, Commun. Pure Appl. Math., 23 (1970), 277–296 | DOI

[17] Majda A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, N. Y., 1984

[18] Alinhac S., “Existence d'Ondes de Raréfaction pour des Systèmes Quasi-linéaires Hyperboliques Multidimensionnels”, Comm. Partial Differential Equations, 14 (1989), 173–230 | DOI

[19] Coulombel J.-F., Secci P., “Nonlinear Compressible Vortex Sheets in Two Space Dimensions”, Ann. Sci. Éc. Norm. Supér., 41:4 (2008), 85–139 | DOI

[20] Catania D., D'Abbicco M., Secci P., “Stability of the Linearized MHD-Maxwell Free Interface Problem”, Communications on Pure and Applied Analysis, 13:6 (2014), 2407–2443 | DOI

[21] Ohno M., Shizuta Y., Yanagisawa T., “The Initial Boundary Value Problem for Linear Symmetric Hyperbolic Problems with Boundary Characteristic of Constant Multiplicity”, J. Math. Kyoto Univ., 35 (1995), 143–210 | DOI