@article{VNGU_2016_16_4_a7,
author = {N. V. Mandrik},
title = {A priori tame estimates for free boundary plasma{\textendash}vacuum problem},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {72--96},
year = {2016},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a7/}
}
N. V. Mandrik. A priori tame estimates for free boundary plasma–vacuum problem. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 72-96. http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a7/
[1] Mandrik N., Trakhinin Y., “Influence of Vacuum Electric Field on the Stability of a Plasma-Vacuum Interface”, Communications in Mathematical Sciences, 12:6 (2014), 1065–1100 | DOI
[2] Trakhinin Y., “Stability of Relativistic Plasma-Vacuum Interfaces”, J. Hyperbolic Differ. Equ., 9 (2012), 469–509 | DOI
[3] Bernstein I. B., Frieman E. A., Kruskal M. D., Kulsrud R. M., “An Energy Principle for Hydromagnetic Stability Problems”, Proc. Roy. Soc. A, 244 (1958), 17–40 | DOI
[4] Goedbloed J. P., Keppens R., Poedts S., Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas, Cambridge University Press, Cambridge, 2010
[5] Trakhinin Y., “On the Well-Posedness of a Linearized Plasma-Vacuum Interface Problem in Ideal Compressible MHD”, Differ. Equ., 249 (2010), 2577–2599 | DOI
[6] Secchi P., Trakhinin Y., “Well-Posedness of the Linearized Plasma-Vacuum Interface Problem”, Interfaces and Free Boundaries, 15:3 (2013), 323–357 | DOI
[7] Lindblad H., “Well Posedness for the Motion of a Compressible Liquid with Free Surface Boundary”, Commun. Math. Phys., 260 (2005), 319–392 | DOI
[8] Trakhinin Y., “Local Existence for the Free Boundary Problem for Nonrelativistic and Relativistic Compressible Euler Equations with a Vacuum Boundary Condition”, Commun. Pure Appl. Math., 62 (2009), 1551–1594 | DOI
[9] Morando A., Trakhinin Y., Trebeschi P., “Well-Posedness of the Linearized Plasma-Vacuum Interface Problem in Ideal Incompressible MHD”, Quart. Appl. Math., 72:3 (2014), 549–587 | DOI
[10] Secchi P., Trakhinin Y., “Well-Posedness of the Plasma-Vacuum Interface Problem”, Nonlinearity, 27 (2014), 105–169 | DOI
[11] Trakhinin Y., “The Existence of Current-Vortex Sheets in Ideal Compressible Magnetohydrodynamics”, Arch. Ration. Mech. Anal., 191 (2009), 245–310 | DOI
[12] Chen Shuxing, “On the Initial-Boundary Value Problems for Quasilinear Symmetric Hyperbolic System with Characteristic Boundary”, Chinese Ann. Math., 3 (1982), 223–232
[13] Morando A., Secchi P., Trebeschi P., “Regularity of Solutions to Characteristic Initial-Boundary Value Problems for Symmetrizable Systems”, J. Hyperbolic Differ. Equ., 6 (2009), 753–808 | DOI
[14] Secchi P., “Some Properties of Anisotropic Sobolev Spaces”, Arch. Math., 75 (2000), 207–216 | DOI
[15] Yanagisawa T., Matsumura A., “The Fixed Boundary Value Problems for the Equations of Ideal Magnetohydrodynamics with a Perfectly Conducting Wall Condition”, Commun. Math. Phys., 136 (1991), 119–140 | DOI
[16] Kreiss H.-O., “Initial Boundary Value Problems for Hyperbolic Systems”, Commun. Pure Appl. Math., 23 (1970), 277–296 | DOI
[17] Majda A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, N. Y., 1984
[18] Alinhac S., “Existence d'Ondes de Raréfaction pour des Systèmes Quasi-linéaires Hyperboliques Multidimensionnels”, Comm. Partial Differential Equations, 14 (1989), 173–230 | DOI
[19] Coulombel J.-F., Secci P., “Nonlinear Compressible Vortex Sheets in Two Space Dimensions”, Ann. Sci. Éc. Norm. Supér., 41:4 (2008), 85–139 | DOI
[20] Catania D., D'Abbicco M., Secci P., “Stability of the Linearized MHD-Maxwell Free Interface Problem”, Communications on Pure and Applied Analysis, 13:6 (2014), 2407–2443 | DOI
[21] Ohno M., Shizuta Y., Yanagisawa T., “The Initial Boundary Value Problem for Linear Symmetric Hyperbolic Problems with Boundary Characteristic of Constant Multiplicity”, J. Math. Kyoto Univ., 35 (1995), 143–210 | DOI