Inequalities for the number of crossings of a strip by a random walk paths
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 65-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain bounds for the distribution of the number of crossings of a strip by a random walk paths.
Keywords: random walk, number of crossings of a strip, probability inequalities.
@article{VNGU_2016_16_4_a6,
     author = {V. I. Lotov and A. P. Lvov},
     title = {Inequalities for the number of crossings of a strip by a random walk paths},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {65--71},
     year = {2016},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a6/}
}
TY  - JOUR
AU  - V. I. Lotov
AU  - A. P. Lvov
TI  - Inequalities for the number of crossings of a strip by a random walk paths
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 65
EP  - 71
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a6/
LA  - ru
ID  - VNGU_2016_16_4_a6
ER  - 
%0 Journal Article
%A V. I. Lotov
%A A. P. Lvov
%T Inequalities for the number of crossings of a strip by a random walk paths
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 65-71
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a6/
%G ru
%F VNGU_2016_16_4_a6
V. I. Lotov; A. P. Lvov. Inequalities for the number of crossings of a strip by a random walk paths. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 65-71. http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a6/

[1] V. I. Lotov, N. G. Orlova, “On the number of crossings of a strip by sample paths of a random walk”, Sbornik: Mathematics, 194:6 (2003), 927–939 | DOI | DOI

[2] I. S. Borisov, “A note on the distribution of the number of crossings of a strip by a random walk”, Theory of Probability Its Applications, 53:2 (2009), 312–316 | DOI | DOI

[3] V. I. Lotov, “On an approach in two-sided boundary crossing problems”, Statistika i Upravlenie Sluchainymi Processami, Nauka, M., 1989, 117–121 (in Russian)

[4] V. I. Lotov, V. R. Khodjibayev, “On the number of crossings of a strip for stochastic processes with independent increments”, Siberian Advances in Mathematics, 3:2 (1993), 145–152

[5] V. I. Lotov, “On the limit behavior of the distribution of the crossing number of a strip by sample paths of a random walk”, Sib. Math. J., 54:2 (2013), 265–270 | DOI

[6] V. I. Lotov, N. G. Orlova, “Asymptotic expansions for the distribution of the crossing number of a strip by sample paths of a random walk”, Sib. Math. J., 45:4 (2004), 680–698 | DOI

[7] V. I. Lotov, “On the asymptotics of the ruin probability”, Theory of Probability Its Applications, 59:1 (2015), 154–163 | DOI | DOI

[8] Lorden G., “On the Excess over the Boundary”, Ann. Math. Stat., 41 (1970), 520–527 | DOI

[9] A. A. Borovkov, Probability Theory, Springer-Verlag, London, 2013

[10] Hajek B., “A Maximal Inequality for Supermartingales”, Electronic Communications in Probability, 19:55 (2014), 1–10

[11] Kugler J., Wachtel V., “Upper Bounds for the Maximum of a Random Walk with Negative Drift”, J. Appl. Probab., 50:4 (2013), 1131–1146 | DOI