Conditions of asymptotic normality of one-step $M$-estimators
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 46-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the case of independent identically distributed observations we study asymptotic behavior of one-step $M$-estimators which are explicit approximations to the corresponding consistent $M$-estimators. In particulary, we find quite general conditions for asymptotic normality of one-step $M$-estimators under consideration. As a consequence, we consider Fisher's one-step approximations to consistent maximum likelihood estimators.
Keywords: one-step $M$-estimators, asymptotic normality, $M$-estimators, maximum likelihood estimators, Newton method, preliminary estimators.
@article{VNGU_2016_16_4_a5,
     author = {Yu. Yu. Linke and A. I. Sakhanenko},
     title = {Conditions of asymptotic normality of one-step $M$-estimators},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {46--64},
     year = {2016},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a5/}
}
TY  - JOUR
AU  - Yu. Yu. Linke
AU  - A. I. Sakhanenko
TI  - Conditions of asymptotic normality of one-step $M$-estimators
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 46
EP  - 64
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a5/
LA  - ru
ID  - VNGU_2016_16_4_a5
ER  - 
%0 Journal Article
%A Yu. Yu. Linke
%A A. I. Sakhanenko
%T Conditions of asymptotic normality of one-step $M$-estimators
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 46-64
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a5/
%G ru
%F VNGU_2016_16_4_a5
Yu. Yu. Linke; A. I. Sakhanenko. Conditions of asymptotic normality of one-step $M$-estimators. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 46-64. http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a5/

[1] A. A. Borovkov, Mathematical Statistics, Gordon Breach, Amsterdam, 1998

[2] P. J. Huber, Robust Statistics, Wiley, N. Y., 1981

[3] Serfling R. J., Approximation Theorems of Mathematical Statistics, John Willey and Song, 1980

[4] Vaart A., Wellner J., Weak Convergence and Empirical Processes, Springer-Verlag, N. Y., 1996

[5] Huber P. J., “Robust Estimation of a Location Parameter”, Ann. Math. Statist., 35 (1964), 73–101 | DOI

[6] Janssen P., Jureckova J., Veraverbeke N., “Rate of Convergence of One- and Two-Step $M$-Estimators with Applications to Maksimum Likelihood and Pitman Estimators”, Ann. Stat., 13:3 (1985), 1222–1229 | DOI

[7] Jureckova J., Sen P. K., “Effect of the Initial Estimator on the Asymptotic Behavior of the One-Step $M$-Estimator”, Ann. Inst. Statist. Math., 42:2 (1990), 345–357 | DOI

[8] Fisher R. A., “Theory of Statistical Estimation”, Proc. Camb. Phil. Soc., 22 (1925), 700–725 | DOI

[9] Le Cam L., “On the Asymptotic Theory of Estimation and Testing Hypotheses”, Proc. Third Berkeley Symp. on Math. Statist. and Prob., v. 1, Univ. of Calif. Press, Berkeley, 1956, 129–156

[10] S. Zacks, The Theory of Statistical Inference, Wiley, N. Y., 1971

[11] E. L. Lehmann, Theory of Point Estimation, Wiley, N. Y., 1983

[12] Linke Yu. Yu., Sakhanenko A. I., “On conditions for asymptotic normality of Fisher's one-step estimators in one-parameter families of distributions”, Siberian Electron. Math. Reports, 11 (2014), 464–475 (in Russian, English abstract)

[13] Verrill S., “Rate of Convergence of $k$-step Newton Estimators to Efficient Likelihood Estimators”, Statistics and Probability Letters, 77 (2007), 1371–1376 | DOI

[14] W. Feller, An Introduction to Probability Theory and its Applications, Willey, N. Y., 1971

[15] V. V. Petrov, Sums of Independent Random Variables, Springer-Verlag, 1975