On one piecewise linear dynamical system which models a gene network with variable feedback
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 28-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Discretization of phase portrait of one 3-dimensional biochemical kinetics dynamical system with piecewise linear right-hand sides of special form is constructed. We describe geometry of this phase portrait and construct there a piecewise linear invariant surface bounded by a stable cycle which is composed by eight rectilinear segments.
Keywords: gene network modeling, positive and negative feedbacks, phase portraits of dynamical systems, the Poincare map
Mots-clés : cycles, invariant surfaces, projective transformations.
@article{VNGU_2016_16_4_a3,
     author = {V. P. Golubyatnikov and M. V. Kazantsev},
     title = {On one piecewise linear dynamical system which models a gene network with variable feedback},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {28--37},
     year = {2016},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a3/}
}
TY  - JOUR
AU  - V. P. Golubyatnikov
AU  - M. V. Kazantsev
TI  - On one piecewise linear dynamical system which models a gene network with variable feedback
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 28
EP  - 37
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a3/
LA  - ru
ID  - VNGU_2016_16_4_a3
ER  - 
%0 Journal Article
%A V. P. Golubyatnikov
%A M. V. Kazantsev
%T On one piecewise linear dynamical system which models a gene network with variable feedback
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 28-37
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a3/
%G ru
%F VNGU_2016_16_4_a3
V. P. Golubyatnikov; M. V. Kazantsev. On one piecewise linear dynamical system which models a gene network with variable feedback. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 28-37. http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a3/

[1] A. A. Akinshin, V. P. Golubyatnikov, “On cycles in symmetric dynamical systems”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:2 (2012), 3–12 (in Russian)

[2] Golubyatnikov V. P., Golubyatnikov I. V., “On Periodic Trajectories in Odd-Dimensional Gene Network Models”, Rus. J. of Numerical Analysis and Mathematical Modelling, 25:4 (2011), 397–412

[3] Golubyatnikov V. P., Likhoshvai V. A., Gaidov Yu. A., Kleshchev A. G., Lashina E. A., “Regular and Chaotic Dynamics in the Gene Networks Modeling”, Proc. $8^\text{th}$ Int. Conf. “Human and Computers-2005” (Aizu, Japan, 2005), 7–12

[4] V. A. Likhoshvai, V. P. Golubyatnikov, G. V. Demidenko, S. I. Fadeev, A. A. Evdokimov, “Theory of Gene Networks”, Computational Systems Biology, Chap. 5, Novosibirsk, 2008, 395–480 (in Russian)

[5] Gaidov Yu. A., Golubyatnikov V. P., “On the Existence and Stability of Cycles in Gene Networks with Variable Feedbacks”, Contemporary Math., 553 (2011), 61–74 | DOI

[6] N. B. Ayupova, V. P. Golubyatnikov, “On the uniqueness of a cycle in an asymmetric three-dimensional model of a molecular repressilator”, J. Appl. Ind. Math., 8:2 (2014), 1–6 | DOI

[7] N. B. Ayupova, V. P. Golubyatnikov, “On two classes of nonlinear dynamical systems: The four-dimensional case”, Sib. Math. J., 56:2 (2015), 231–236 | DOI

[8] Gaidov Yu. A., Golubyatnikov V. P., “On Cycles and Other Geometric Phenomena in Phase Portraits of Some Nonlinear Dynamical Systems”, Geometry and applications, Springer Proc. in Mathematics and Statistics, 72, Springer, N. Y., 2014, 225–233 | DOI

[9] V. P. Golubyatnikov, M. V. Kazantsev, A. E. Kalenykh, “On discretization of phase portraits of some dynamical systems”, Proc. All-Russia Conf. Mathematics and Applications: Fundamental Problems of Science and Technics, Altai State University, Barnaul, 2015, 55–59 (in Russian)

[10] Elowitz M. B., Leibler S., “A Synthetic Oscillatory Network of Transcriptional Regulators”, Nature, 403 (2000), 335–338 | DOI

[11] G. Yu. Riznichenko, Lectures on Mathematical Models in Biology, M.–Izhevsk, 2011 (in Russian)

[12] Yu. I. Gilderman, “On limit cycles of piecewise affinne systems”, Dokl. Akad. Nauk SSSR, 230:3 (1976), 512–515 (in Russian)

[13] V. G. Demidenko, “Reconstruction of the parameters of the homogeneous linear models of the gene network dynamics”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 8:3 (2008), 51–59 (in Russian)

[14] I. I. Matveeva, A. M. Popov, “On properties of solutions to one system modeling a multistage substance synthesis”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:3 (2009), 86–94 (in Russian)

[15] Glass L., Pasternack J. S., “Stable Oscillations in Mathematical Models of Biologigal Control Systems”, J. of Math. Biology, 6 (1978), 207–223 | DOI

[16] M. V. Kazantsev, “On some properties of the domain graphs of dynamical systems”, Sib. Zh. Ind. Mat., 56:4 (2015), 42–48 (in Russian)

[17] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Modern Geometry, Springer, 1992

[18] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, 1989

[19] Likhoshvai V. A., Kogai V. V., Fadeev S. I., Khlebodarova T. M., “On the Chaos in Gene Networks”, J. of Bioinformatics and Computational Biology, 11:1 (2013), 1340009-1–1340009-25 | DOI

[20] Likhoshvai V. A., Kogai V. V., Fadeev S. I., Khlebodarova T. M., “Alternative Splicing Can Lead to Chaos”, J. of Bioinformatics and Computational Biology, 13:1 (2015), 1540003-1–1540003-18 | DOI