On linear stability of an incompressible polymer liquid at rest
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 17-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It has been proved that the linearized equations of an incompressible polymer liquid have no particular time-growing solutions.
Keywords: polymer liquid, eigenvalue problem.
Mots-clés : rest
@article{VNGU_2016_16_4_a2,
     author = {A. M. Blokhin and A. Yu. Goldin},
     title = {On linear stability of an incompressible polymer liquid at rest},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {17--27},
     year = {2016},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a2/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - A. Yu. Goldin
TI  - On linear stability of an incompressible polymer liquid at rest
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 17
EP  - 27
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a2/
LA  - ru
ID  - VNGU_2016_16_4_a2
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A A. Yu. Goldin
%T On linear stability of an incompressible polymer liquid at rest
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 17-27
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a2/
%G ru
%F VNGU_2016_16_4_a2
A. M. Blokhin; A. Yu. Goldin. On linear stability of an incompressible polymer liquid at rest. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 17-27. http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a2/

[1] Yu. A. Altuhov, A. S. Gusev, G. V. Pyshnogray, Introduction to the Mesoscopic Theory of Flowable Polymer Systems, AltGPA Publ., Barnaul, 2012 (in Russian)

[2] A. M. Blokhin, N. V. Bambaeva, “Stationary solutions of equations of incompressible visco-elastic polymer liquid”, Comput. Math. and Math. Phys., 54:5 (2014), 874–899 | DOI

[3] A. M. Blokhin, A. V. Egitov, D. L. Tkachev, “Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel”, Comput. Math. and Math. Phys., 55:5 (2015), 848–873 | DOI | DOI

[4] A. M. Blokhin, D. L. Tkachev, “Linear asymptotic instability of a stationary flow of a polymeric medium in a plane channel in the case of periodic perturbations”, J. Appl. Ind. Math., 8:4 (2014), 467–478 | DOI

[5] S. K. Godunov, Ordinary Differential Equations with Constant Coefficients, Lecture notes, v. 1, Boundary value problems, NSU Publ., Novosibirsk, 1994 (in Russian)

[6] R. Bellman, K. L. Cooke, Differential-Difference Equations, Academic Press, N. Y.–London, 1963

[7] T. D. Vazhenina, V. T. Grin', A. N. Krajko, N. I. Tillyaeva, The Analysis of Stability and Dynamics of a Deceleration Flow of an Ideal Gas in Channels with a Closing Shock Relation in the Framework of a Linear Approximation, Technical report No 4763, Central Institute of Aviation Motors, M., 1974 (in Russian)