Some properties of elementary embeddability in the model theory
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 13-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that isomorphism implies elementary embeddability, and elementary embeddability implies elementary equivalence. Both converse statements are wrong. These three relationships in the class of models of some theory $T$ of a countable language $L$ of first order are considered.
Keywords: model theory, elementary embeddability, elementary equivalence.
Mots-clés : isomorphism
@article{VNGU_2016_16_4_a1,
     author = {M. I. Bekenov},
     title = {Some properties of elementary embeddability in the model theory},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {13--16},
     year = {2016},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a1/}
}
TY  - JOUR
AU  - M. I. Bekenov
TI  - Some properties of elementary embeddability in the model theory
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 13
EP  - 16
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a1/
LA  - ru
ID  - VNGU_2016_16_4_a1
ER  - 
%0 Journal Article
%A M. I. Bekenov
%T Some properties of elementary embeddability in the model theory
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 13-16
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a1/
%G ru
%F VNGU_2016_16_4_a1
M. I. Bekenov. Some properties of elementary embeddability in the model theory. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 13-16. http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a1/

[1] Yu. L. Ershov, E. A. Palyutin, Matematical Logic, Mir Publisher, M., 1984

[2] C. C. Chang, H. J. Keisler, Model theory, Studies in Logic and the Foundation of Mathematics, 73, North-Holland Publishing Company, Amsterdam–London, 1973

[3] G. E. Sacks, Saturated Model Theory, W. A. Benjamin, Reading, Mass., 1972

[4] Shelah S., “Stability, F.C.P., and Superstability; Model Theoretic Properties of Formulas in First Order Theory”, Ann. Math. Logic, 3:3 (1971), 271—362 | DOI