Some properties of elementary embeddability in the model theory
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 13-16

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that isomorphism implies elementary embeddability, and elementary embeddability implies elementary equivalence. Both converse statements are wrong. These three relationships in the class of models of some theory $T$ of a countable language $L$ of first order are considered.
Keywords: model theory, elementary embeddability, elementary equivalence.
Mots-clés : isomorphism
@article{VNGU_2016_16_4_a1,
     author = {M. I. Bekenov},
     title = {Some properties of elementary embeddability in the model theory},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {13--16},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a1/}
}
TY  - JOUR
AU  - M. I. Bekenov
TI  - Some properties of elementary embeddability in the model theory
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 13
EP  - 16
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a1/
LA  - ru
ID  - VNGU_2016_16_4_a1
ER  - 
%0 Journal Article
%A M. I. Bekenov
%T Some properties of elementary embeddability in the model theory
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 13-16
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a1/
%G ru
%F VNGU_2016_16_4_a1
M. I. Bekenov. Some properties of elementary embeddability in the model theory. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 13-16. http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a1/