Some properties of elementary embeddability in the model theory
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 13-16
Cet article a éte moissonné depuis la source Math-Net.Ru
It is known that isomorphism implies elementary embeddability, and elementary embeddability implies elementary equivalence. Both converse statements are wrong. These three relationships in the class of models of some theory $T$ of a countable language $L$ of first order are considered.
Keywords:
model theory, elementary embeddability, elementary equivalence.
Mots-clés : isomorphism
Mots-clés : isomorphism
@article{VNGU_2016_16_4_a1,
author = {M. I. Bekenov},
title = {Some properties of elementary embeddability in the model theory},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {13--16},
year = {2016},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a1/}
}
M. I. Bekenov. Some properties of elementary embeddability in the model theory. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 4, pp. 13-16. http://geodesic.mathdoc.fr/item/VNGU_2016_16_4_a1/
[1] Yu. L. Ershov, E. A. Palyutin, Matematical Logic, Mir Publisher, M., 1984
[2] C. C. Chang, H. J. Keisler, Model theory, Studies in Logic and the Foundation of Mathematics, 73, North-Holland Publishing Company, Amsterdam–London, 1973
[3] G. E. Sacks, Saturated Model Theory, W. A. Benjamin, Reading, Mass., 1972
[4] Shelah S., “Stability, F.C.P., and Superstability; Model Theoretic Properties of Formulas in First Order Theory”, Ann. Math. Logic, 3:3 (1971), 271—362 | DOI