Some equations with partial derivative of high order
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 103-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article are a boundary problems for linear and non linear equation with partial derivative of order higher than two considered. For some conditions on coefficients of equation are proven an uniqueness and existence theorems. If conditions on coefficients differential equation are not fulfilled or changed of boundary conditions then given a examples solutions these problems, which will be non uniquely, non stable and will not belong to Sobolev space. Moreover, also given a exactly solutions for equations of Korteweg–de Vries, Kadomzeva–Petviashwili.
Keywords: uniqueness solution, spaces of S. L. Sobolev, stability solution, boundary problem, equation of Korteweg–de Vries.
Mots-clés : existence solution
@article{VNGU_2016_16_3_a9,
     author = {N. A. Chuesheva},
     title = {Some equations with partial derivative of high order},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {103--117},
     year = {2016},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a9/}
}
TY  - JOUR
AU  - N. A. Chuesheva
TI  - Some equations with partial derivative of high order
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 103
EP  - 117
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a9/
LA  - ru
ID  - VNGU_2016_16_3_a9
ER  - 
%0 Journal Article
%A N. A. Chuesheva
%T Some equations with partial derivative of high order
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 103-117
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a9/
%G ru
%F VNGU_2016_16_3_a9
N. A. Chuesheva. Some equations with partial derivative of high order. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 103-117. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a9/

[1] A. V. Chueshev, “About one high-order linear equation of mixed type”, Sib. Math. J., 43:2 (2002), 363–378 | DOI

[2] N. A. Chuesheva, “A boundary problems for equation of order $2m$”, J. of Sib. Fed. Univ. Mat. Phys., 2006, no. 4, 157–162 (in Russian)

[3] Inan I. E., “$(G'/G)$-Expansion Method for Traveling Wave Solutions of the Sixth-Order Ramani Equation”, Cankaya Univ. J. of Sci. and Eng., 7:1 (2010), 51–57

[4] N. A. Chuesheva, “Several linear and nonlinear differential equations”, Geometry Days in Novosibirsk, Abstracts of the Int. Conf. Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 2013, 93–94 (in Russian)

[5] V. N. Vragov, Boundary Problems for Nonclassical Equations of Mathematical Physics, Novosibirsk State Univ., Novosibirsk, 1983 (in Russian)

[6] I. E. Egorov, S. G. Pyatkov, S. V. Popov, Nonclassical Differential-Operator Equations, Nauka, Novosibirsk, 2000 (in Russian)

[7] A. I. Kozanov, “Linear inverse problems for a class of degenerate equations of Sobolev type”, Vestn. Yuzhno-Ural'skogo Gos. Univ. Ser. Mat. Mod. i Prog., 2012, no. 11, 33–42 (in Russian)

[8] S. L. Sobolev, “On a boundary value problem of mathematical physics”, Izv. Akad. Nauk SSSR Ser. Mat., 18:1 (1954), 3–50 (in Russian)

[9] A. A. Tikilyainen, “On an initial-boundary value problem for a rotating liquid with a flow”, Zh. Vychisl. Mat. Mat. Fiz., 29:4 (1989), 565–576 (in Russian)

[10] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Tokyo–Keln, 2003

[11] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York–Basel, 2003

[12] A. I. Kozanov, S. H. Amirov, “Solvability mixed problem for some strongly nonlinearly equations of Sobolev type higher order”, Sib. Zh. Ind. Mat., 17:4 (2014), 14–30 (in Russian)

[13] Takamori K., “Well-Posedness for the Fifth Order KdV Equation”, Funkc. Ekvacioj. Funct. Equat., 55:1 (2012), 17–53 | DOI

[14] N. A. Chuesheva, “Several linear and nonlinear differential equations”, Geometry Days in Novosibirsk, Abstracts of the Int. Conf. Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 2015, 67–68 (in Russian)

[15] Anupma B., “Similarity Reductions and new Invariant Solutions of $(2+1)$-Dimensional Potential Kadomstev–Petviashvili Equation”, Int. J. Nonlinear Sci., 16:3 (2013), 268–279

[16] V. K. Beloshapka, “Analytic complexity of functions of two variables”, Russian J. of Math. Phys., 14:3 (2007), 243–249 (in Russian) | DOI

[17] N. A. Chuesheva, “Dirichlet problem for a compound type equation”, Correct Boundary Value Problems for Nonclassical Equations of Mathematical Physics, Novosibirsk, 1984, 154–160 (in Russian)

[18] A. I. Kozhanov, “Determination of the source in the linearized equation of Korteweg–de Vries”, Mat. Zametki YaGU, 9:2 (2002), 74–82 (in Russian)