Some equations with partial derivative of high order
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 103-117

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article are a boundary problems for linear and non linear equation with partial derivative of order higher than two considered. For some conditions on coefficients of equation are proven an uniqueness and existence theorems. If conditions on coefficients differential equation are not fulfilled or changed of boundary conditions then given a examples solutions these problems, which will be non uniquely, non stable and will not belong to Sobolev space. Moreover, also given a exactly solutions for equations of Korteweg–de Vries, Kadomzeva–Petviashwili.
Keywords: uniqueness solution, spaces of S. L. Sobolev, stability solution, boundary problem, equation of Korteweg–de Vries.
Mots-clés : existence solution
@article{VNGU_2016_16_3_a9,
     author = {N. A. Chuesheva},
     title = {Some equations with partial derivative of high order},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {103--117},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a9/}
}
TY  - JOUR
AU  - N. A. Chuesheva
TI  - Some equations with partial derivative of high order
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 103
EP  - 117
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a9/
LA  - ru
ID  - VNGU_2016_16_3_a9
ER  - 
%0 Journal Article
%A N. A. Chuesheva
%T Some equations with partial derivative of high order
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 103-117
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a9/
%G ru
%F VNGU_2016_16_3_a9
N. A. Chuesheva. Some equations with partial derivative of high order. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 103-117. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a9/