Solution of boundary value problems in cylinders with a two-layer film inclusion
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 98-102
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a class of boundary value problems (elliptic, parabolic and hyperbolic equations) in cylinders, separated by double-layer film on two half cylinder. The film consists of infinitely thin strongly and weakly permeable layers. A theorem of existence and uniqueness. Formulas expressing the solutions to these problems through the solutions of the analogous classical problems in homogeneous cylinders without film are derived.
Keywords:
boundary value problems, generalized transmission conditions, the inclusion of a two-layer film, the method of convolution of Fourier expansions.
@article{VNGU_2016_16_3_a8,
author = {S. E. Kholodovskii},
title = {Solution of boundary value problems in cylinders with a two-layer film inclusion},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {98--102},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a8/}
}
TY - JOUR AU - S. E. Kholodovskii TI - Solution of boundary value problems in cylinders with a two-layer film inclusion JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2016 SP - 98 EP - 102 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a8/ LA - ru ID - VNGU_2016_16_3_a8 ER -
S. E. Kholodovskii. Solution of boundary value problems in cylinders with a two-layer film inclusion. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 98-102. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a8/