Solution of boundary value problems in cylinders with a two-layer film inclusion
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 98-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a class of boundary value problems (elliptic, parabolic and hyperbolic equations) in cylinders, separated by double-layer film on two half cylinder. The film consists of infinitely thin strongly and weakly permeable layers. A theorem of existence and uniqueness. Formulas expressing the solutions to these problems through the solutions of the analogous classical problems in homogeneous cylinders without film are derived.
Keywords: boundary value problems, generalized transmission conditions, the inclusion of a two-layer film, the method of convolution of Fourier expansions.
@article{VNGU_2016_16_3_a8,
     author = {S. E. Kholodovskii},
     title = {Solution of boundary value problems in cylinders with a two-layer film inclusion},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {98--102},
     year = {2016},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a8/}
}
TY  - JOUR
AU  - S. E. Kholodovskii
TI  - Solution of boundary value problems in cylinders with a two-layer film inclusion
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 98
EP  - 102
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a8/
LA  - ru
ID  - VNGU_2016_16_3_a8
ER  - 
%0 Journal Article
%A S. E. Kholodovskii
%T Solution of boundary value problems in cylinders with a two-layer film inclusion
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 98-102
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a8/
%G ru
%F VNGU_2016_16_3_a8
S. E. Kholodovskii. Solution of boundary value problems in cylinders with a two-layer film inclusion. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 98-102. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a8/

[1] D. A. Nomirovskii, “Generalized solvability of parabolic systems with heterogeneous conjugation conditions of nonideal contact type”, Differ. Uravn., 40:10 (2004), 1390–1399 (in Russian)

[2] S. E. Kholodovskii, “On the solution of boundary value problems for the Laplace equation on the plane with a three-layer film inclusion”, Differ. Equ., 49:12 (2013), 1655–1660 | DOI

[3] A. N. Tihonov, A. A. Samarskii, Equations of Mathematical Physics, Nauka, M., 1977 (in Russian)

[4] S. E. Kholodovskii, “A method of convolution of Fourier expansions as applied to solving boundary value problems with intersecting interface lines”, Comput. Math. and Math. Phys., 47:9 (2007), 1489–1495 | DOI

[5] S. E. Kholodovskii, “The convolution method of Fourier expansions. The case of a crack (screen) in an inhomogeneous space”, Differ. Equ., 45:8 (2009), 1229–1233 | DOI