Solution of boundary value problems in cylinders with a two-layer film inclusion
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 98-102

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of boundary value problems (elliptic, parabolic and hyperbolic equations) in cylinders, separated by double-layer film on two half cylinder. The film consists of infinitely thin strongly and weakly permeable layers. A theorem of existence and uniqueness. Formulas expressing the solutions to these problems through the solutions of the analogous classical problems in homogeneous cylinders without film are derived.
Keywords: boundary value problems, generalized transmission conditions, the inclusion of a two-layer film, the method of convolution of Fourier expansions.
@article{VNGU_2016_16_3_a8,
     author = {S. E. Kholodovskii},
     title = {Solution of boundary value problems in cylinders with a two-layer film inclusion},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {98--102},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a8/}
}
TY  - JOUR
AU  - S. E. Kholodovskii
TI  - Solution of boundary value problems in cylinders with a two-layer film inclusion
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 98
EP  - 102
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a8/
LA  - ru
ID  - VNGU_2016_16_3_a8
ER  - 
%0 Journal Article
%A S. E. Kholodovskii
%T Solution of boundary value problems in cylinders with a two-layer film inclusion
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 98-102
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a8/
%G ru
%F VNGU_2016_16_3_a8
S. E. Kholodovskii. Solution of boundary value problems in cylinders with a two-layer film inclusion. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 98-102. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a8/