@article{VNGU_2016_16_3_a8,
author = {S. E. Kholodovskii},
title = {Solution of boundary value problems in cylinders with a two-layer film inclusion},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {98--102},
year = {2016},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a8/}
}
TY - JOUR AU - S. E. Kholodovskii TI - Solution of boundary value problems in cylinders with a two-layer film inclusion JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2016 SP - 98 EP - 102 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a8/ LA - ru ID - VNGU_2016_16_3_a8 ER -
S. E. Kholodovskii. Solution of boundary value problems in cylinders with a two-layer film inclusion. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 98-102. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a8/
[1] D. A. Nomirovskii, “Generalized solvability of parabolic systems with heterogeneous conjugation conditions of nonideal contact type”, Differ. Uravn., 40:10 (2004), 1390–1399 (in Russian)
[2] S. E. Kholodovskii, “On the solution of boundary value problems for the Laplace equation on the plane with a three-layer film inclusion”, Differ. Equ., 49:12 (2013), 1655–1660 | DOI
[3] A. N. Tihonov, A. A. Samarskii, Equations of Mathematical Physics, Nauka, M., 1977 (in Russian)
[4] S. E. Kholodovskii, “A method of convolution of Fourier expansions as applied to solving boundary value problems with intersecting interface lines”, Comput. Math. and Math. Phys., 47:9 (2007), 1489–1495 | DOI
[5] S. E. Kholodovskii, “The convolution method of Fourier expansions. The case of a crack (screen) in an inhomogeneous space”, Differ. Equ., 45:8 (2009), 1229–1233 | DOI