A sufficient condition of solutions existence for infinite systems of algebraic equations
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 85-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The sufficient condition for existence of strictly particular solution of infinite system of linear algebraic equations is obtained by the use of double series theory. We expanded the determinant of Gaussian infinite matrix along the row as the result we obtained the series of infinite determinant. We proved the convergence theorems for this series of infinite determinant. We gave some an examples of applying this sufficient condition.
Keywords: infinite system, Gaussian infinite determinant, strictly particular solution, infinite Cramer's determinant.
Mots-clés : Gaussian infinite matrix
@article{VNGU_2016_16_3_a7,
     author = {F. M. Fedorov},
     title = {A sufficient condition of solutions existence for infinite systems of algebraic equations},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {85--97},
     year = {2016},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a7/}
}
TY  - JOUR
AU  - F. M. Fedorov
TI  - A sufficient condition of solutions existence for infinite systems of algebraic equations
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 85
EP  - 97
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a7/
LA  - ru
ID  - VNGU_2016_16_3_a7
ER  - 
%0 Journal Article
%A F. M. Fedorov
%T A sufficient condition of solutions existence for infinite systems of algebraic equations
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 85-97
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a7/
%G ru
%F VNGU_2016_16_3_a7
F. M. Fedorov. A sufficient condition of solutions existence for infinite systems of algebraic equations. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 85-97. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a7/

[1] F. M. Fedorov, Periodic Infinite Systems of Linear Algebraic Equations, Nauka, Novosibirsk, 2009 (in Russian)

[2] F. M. Fedorov, Infinite System of Linear Algebraic Equations and Their Applications, Nauka, Novosibirsk, 2011 (in Russian)

[3] F. M. Fedorov, Bordering Method of Solution of Mathphysic's Applied Tasks, Nauka, Novosibirsk, 2000 (in Russian)

[4] V. P. Shestopalov, A. A. Kirilenko, S. A. Masalov, Matrix Equations of Convolution Type in the Theory of Diffraction, Nauk. Dum., Kiev, 1984 (in Russian)

[5] T. A. Rozet, “Infinite systems in wave-guide theory”, Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 1(2), 136–142 (in Russian)

[6] Ya. V. Chumachenko, V. P. Chumachenko, “On infinite systems of method of areas production for the wave scattering problems in the plane nodes with connecting rectangular cavity”, Radioelectronika, Informatika, Upravlenie, 2009, no. 2, 32–34 (in Russian)

[7] S. A. Masalov, “Method of semi-inversion and infinite systems of equations in certain problems of wave diffraction”, Comput. Math. and Math. Phys., 21:1 (1981), 81–89 | DOI

[8] A. V. Gribovskii, L. N. Litvinenko, S. L. Prosvirnin, “Method of moments in two-dimensional electrostatic problems for infinitely thin open conductors”, Tech. Phys., 33:2 (1988), 170–173

[9] V. V. Beloglazov, N. D. Biryuk, V. V. Yurgelas, “The problem of convergence of an infinite system of algebraic equations describing forced oscillations of parametric circuit”, Vestn. VGU. Ser.: Fiz. Mat., 2010, no. 2, 175–180 (in Russian)

[10] E. L. Papernov, “The solution of infinite systems of linear algebraic equations”, Zh. Vychisl. Mat. Mat. Fiz., 18:5 (1978), 1300–1302 (in Russian)

[11] A. M. Gomilko, “On a class of infinite systems of linear algebraic equations”, Zh. Vychisl. Mat. Mat. Fiz., 33:7 (1993), 980–995 (in Russian)

[12] B. M. Koyalovich, “Study of infinite systems of linear equations”, Izv. Fiz. Mat. Steklov Inst., 3 (1930), 41–167 (in Russian)

[13] V. T. Grinchenko, A. F. Ulitko, Spatial Problems of the Theory of Elasticity and Plasticity, v. 3, The Equilibrium of Elastic Bodies of the Canonical Form, Nauk. Dum., Kiev, 1985 (in Russian)

[14] S. O. Papkov, “Infinite systems of linear algebraic equations in the case of first boundary problem for rectangular prism”, Din. Sist., 2010, no. 28, 89–98 (in Russian)

[15] F. M. Fedorov, “An algorithm for Gaussian infinite systems of linear algebraic equations (BSLAU)”, Mat. Zametki YaGU, 19:1 (2012), 133–140 (in Russian)

[16] F. M. Fedorov, “The non-uniform Gaussian infinite systems of linear algebraic equations (BSLAU)”, Mat. Zametki YaGU, 19:1 (2012), 124–131 (in Russian)

[17] F. M. Fedorov, “On the theory of Gaussian infinite systems of linear algebraic equations (BSLAU)”, Mat. Zametki YaGU, 18:2 (2011), 209–217 (in Russian)

[18] F. M. Fedorov, O. F. Ivanova, N. N. Pavlov, “Convergence of the method of reduction and consistency of infinite systems”, Mat. Zametki SVFU, 11:2 (2014), 14–21 (in Russian)

[19] F. M. Fedorov, N. N. Pavlov, O. F. Ivanova, “The algorithms implementing the decisions of infinite systems of linear algebraic equations”, Mat. Zametki YaGU, 20:1 (2013), 215–223 (in Russian)

[20] N. N. Pavlov, F. M. Fedorov, O. F. Ivanova, “On the main and strictly private solution of the systems of linear algebraic equations”, Proc. of $7^\text{th}$ Int. Conf. on Math. Modelling, Yakutsk, 2014, 144–145 (in Russian)

[21] V. F. Kagan, Bases of the Theory of Determinants, Gos. Izd. Ukr., Kiev, 1922 (in Russian)

[22] L. V. Kantorovich, V. I. Krylov, Approximate Methods of Higher Analysis, GITTL, M., 1952 (in Russian)

[23] R. G. Cooke, Infinite Matrices and Sequence Spaces, Macmillan and Co., Ltd., London, 1950

[24] V. G. Chelidze, Some Methods of Summation of Double Series and Double Integrals, Izd-vo TGU, Tbilisi, 1977 (in Russian)