@article{VNGU_2016_16_3_a5,
author = {M. V. Plekhanova},
title = {Strong solutions of a nonlinear degenerate fractional order evolution equation},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {61--74},
year = {2016},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a5/}
}
TY - JOUR AU - M. V. Plekhanova TI - Strong solutions of a nonlinear degenerate fractional order evolution equation JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2016 SP - 61 EP - 74 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a5/ LA - ru ID - VNGU_2016_16_3_a5 ER -
M. V. Plekhanova. Strong solutions of a nonlinear degenerate fractional order evolution equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 61-74. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a5/
[1] Fedorov V. E., Gordievskikh D. M., “Resolving Operators of Degenerate Evolution Equations with Fractional Derivative with Respect to Time”, Russian Mathematics, 59:1 (2015), 60–70 | DOI
[2] D. M. Gordievskikh, V. E. Fedorov, “Solutions for initial boundary value problems for some degenerate equations systems of fractional order with respect to the time”, Izv. Irkut. Gos. Univ., 12 (2015), 12–22 (in Russian)
[3] Fedorov V. E., Gordievskikh D. M., Plekhanova M. V., “Equations in Banach Spaces with a Degenerate Operator under a Fractional Derivative”, Differ. Equ., 51:10 (2015), 1360–1368 | DOI
[4] G. V. Demidenko, G. V. Uspenskii, Equations and Systems That Are Not Solved for the Highest Derivative, Nauch. Kniga, Novosibirsk, 1998 (in Russian)
[5] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, N.Y., 1999
[6] A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov, Yu. D. Pletner, Linear and Non-Linear Equations of Sobolev Type, M., 2007 (in Russian)
[7] Plekhanova M. V., “Quasilinear Equations that are not Solved for the Higher-Order Time Derivative”, Sib. Mat. J., 56:4 (2015), 725–735 | DOI
[8] Podlubny I., Fractional Differential Equations, San Diego–Boston, 1999
[9] Mainardi F., Spada G., “Creep, Relaxation and Viscosity Properties for Basic Fractional Models in Rheology”, The European Physical Journal, 193, Special Topics. Special issue: Perspectives on Fractional Dynamics and Control (2011), 133–160
[10] Uchaikin V. V., Fractional Derivatives for Phisicists and Engineers, Higher Education Press, Bejing, 2012
[11] Jaishankar A., McKinley G. H., “Power-Law Rheology in the Bulk and at the Interface: Quasi-Properties and Fractional Constitutive Equations”, Proc. R. Soc. A, 469 (2015), 20120284 | DOI
[12] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003
[13] A. P. Oskolkov, “Initial-boundary value problems for equations of motion of Kelvin–Foygta and Oldroyd fluids”, Proc. Steklov Inst. Math., 179 (1989), 137–182
[14] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, Science Publishers, New York–London–Paris, 1969