Strong solutions of a nonlinear degenerate fractional order evolution equation
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 61-74

Voir la notice de l'article provenant de la source Math-Net.Ru

Unique solvability conditions in the class of strong solutions are obtained for initial value problems to a degenerate evolution equation, not solvable with respect to the fractional derivative. General results are applied to research of an initial boundary value problem for the equations system describing the fractional model of viscoelastic Kelvin–Voigt fluid.
Keywords: degenerate evolution equation, fractional Caputo derivative, nonlinear equation, initial boundary value problem, fractional model of viscoelastic fluid.
@article{VNGU_2016_16_3_a5,
     author = {M. V. Plekhanova},
     title = {Strong solutions of a nonlinear degenerate fractional order evolution equation},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {61--74},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a5/}
}
TY  - JOUR
AU  - M. V. Plekhanova
TI  - Strong solutions of a nonlinear degenerate fractional order evolution equation
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 61
EP  - 74
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a5/
LA  - ru
ID  - VNGU_2016_16_3_a5
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%T Strong solutions of a nonlinear degenerate fractional order evolution equation
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 61-74
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a5/
%G ru
%F VNGU_2016_16_3_a5
M. V. Plekhanova. Strong solutions of a nonlinear degenerate fractional order evolution equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 61-74. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a5/