Strong solutions of a nonlinear degenerate fractional order evolution equation
    
    
  
  
  
      
      
      
        
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 61-74
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Unique solvability conditions in the class of strong solutions are obtained for initial value problems to a degenerate evolution equation, not solvable with respect to the fractional derivative. General results are applied to research of an initial boundary value problem for the equations system describing the fractional model of viscoelastic Kelvin–Voigt fluid.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
degenerate evolution equation, fractional Caputo derivative, nonlinear equation, initial boundary value problem, fractional model of viscoelastic fluid.
                    
                  
                
                
                @article{VNGU_2016_16_3_a5,
     author = {M. V. Plekhanova},
     title = {Strong solutions of a nonlinear degenerate fractional order evolution equation},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {61--74},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a5/}
}
                      
                      
                    TY - JOUR AU - M. V. Plekhanova TI - Strong solutions of a nonlinear degenerate fractional order evolution equation JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2016 SP - 61 EP - 74 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a5/ LA - ru ID - VNGU_2016_16_3_a5 ER -
M. V. Plekhanova. Strong solutions of a nonlinear degenerate fractional order evolution equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 61-74. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a5/
